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Abstract—It is challenging to get reliable performance benchmarking results. Benchmarking matters because one of the defining

characteristics of big data systems is the ability to process large datasets faster. “How large” and “how fast” drive technology choices,

purchasing decisions, and cluster operations. Even with the best intentions, performance benchmarking is fraught with pitfalls—easy to

get numbers, hard to tell if they are sound. This paper discusses five common pitfalls drawn from engineering and customer

experiences at Cloudera, a leading big data vendor. These pitfalls are: “Comparing Apples to Oranges”—when too many parameters

are modified and comparison is impossible, “Not Testing at Scale”—trying to test a big data system by extrapolating from an under-

sized test system, “Believing in Miracles”—failing to question suspicious results, “Using Unrealistic Benchmarks”—using workloads far

removed from what will realistically be used by customers, and “Communicating Results Poorly”—neglecting to communicate sufficient

information for customers to understand and reproduce the results. These pitfalls offers a behind-the-scenes look at internal

engineering and review processes that produces rigorous benchmark results. Readers working on big data in both the industry and in

academia can draw lessons from our experience.

Index Terms—Big data, performance, benchmarking, case studies
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1 INTRODUCTION

DONE poorly, performance benchmarking produces
disastrous results. Here are two stories from the

authors’ early careers.
An engineer ran a benchmark on a proof-of-concept

5-node cluster. Extrapolating the results, the engineer
assumed the system will scale linearly and plans for a 50-
node cluster to support the required production workloads.
The production cluster ran for 30 minues before latency
became completely unacceptable. It hit network bottlenecks
not revealed at the proof-of-concept scale. As a result, roll-
out of the production system had to be delayed by a week
as the scalability problems were being resolved.

A graduate student ran a Hadoop benchmark without
realizing that he accidentally mounted the Hadoop Distrib-
uted File System (HDFS) on the departmental network filer.
The benchmark promptly took down the filer for all profes-
sors, staff, and students at the department. The student
received angry e-mails from the system administrators for
days following the incident.

These two particular stories reveal how difficult it is
to do performance benchmarking in a way that does not
disrupt customer-facing, production systems, in a way
that represent real-life workloads running there. Despite
performance being an increasingly visible aspect of big
data systems, there has not yet been many case studies
of common benchmarking pitfalls, nor ways to avoid
them. In this industry experience paper, we offer a col-
lection of stories that illustrate important principles of

conducting performance benchmarking and assessing
others’ results:

1) Workload and hardware choices should be relevant
to the expected use of the product.

2) When modifying a standard benchmark, the modifi-
cation should be documented and justified.

3) Testing big data means testing the system along mul-
tiple dimensions of large scale: Large number of jobs,
jobs with large number of tasks, large data size, large
clusters, and large nodes.

4) Tests designed to compare systems across a single
parameter, e.g., new version of platform, must make
sure this parameter was the only change. Changing
additional parameters invalidates the comparison.

5) Having a model of expected behavior of the system
is mandatory. Otherwise it is impossible to reason
about the results.

6) Benchmark results should include enough informa-
tion to reproduce the result—hardware, configura-
tion, and workload.

7) Make sure any results tables and charts are clear,
meaningful, and not misleading.

The stories in this paper come from internal engineering
and customer experiences at Cloudera, a leading big data
vendor. The pitfalls involve performance benchmarking of
different components in the Hadoop ecosystem. This is not
a comprehensive categorization of all possible mistakes, our
goal is to give readers in both the industry and in academia
tools with which they can improve their own work.

2 COMPARING APPLES TO ORANGES

We often run two tests, expecting only one parameter to
change, while in fact many parameters changed and a com-
parison is impossible—in other words, we compare apples
to oranges.
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Late 2013, the Hadoop community adopted MapReduce
2 (MR2) running on Yet Another Resource Negotiator
(YARN) as the default MapReduce execution framework [1],
[2]. This change offers functionality improvements over the
original MapReduce, or MapReduce 1 (MR1) [3]. Many clus-
ter operators did performance benchmarking on their own
when they considered whether to upgrade. They initially
reported a performance regression fromMR1 to MR2.

What actually happened was that a straightforward com-
parison ended up comparing two different things, in other
words, “comparing apples to oranges”. Two issues led to
this discrepancy.

One issue was that TeraSort, a limited but frequently
used benchmark, changed between MR1 and MR2 [4]. To
reflect rule changes in the GraySort benchmark on which it
is based, the data generated by the TeraSort included with
MR2 is less compressible. A valid comparison would use
the same version of TeraSort for both releases, because map
output compression is enabled by default as a performance
optimization in Cloudera Distribution with Apache Hadoop
(CDH). Otherwise, MR1 will have an unfair advantage by
using more compressible data (Fig. 1).

Another issue was the replacement of “task slots” in MR1
with “containers” in MR2. YARN has several configuration
parameters that affected how many containers will be run
on each node [5]. A valid comparison would set these con-
figurations such that there is the same degree of parallel
processing between MR1 and MR2. Otherwise, depending
on whether hardware is over or under-committed, either
MR1 or MR2 will have the advantage.

We committed these pitfalls ourselves in the early days
of ensuring MR1 and MR2 performance parity. We regu-
larly compared MR1 and MR2 performance on our nightly
CDH builds, and the “regression” was caught the very first
time we did this comparison. Our MapReduce and Perfor-
mance Engineering teams collaborated to identify the code
changes and understand what makes a valid performance
comparison. This effort culminated in MR2 shipped in
CDH5.0.0 at performance parity with MR1.

Here are some questions to ask regarding your own per-
formance tests: If you are comparing hardware, are you run-
ning identical workloads? If you are comparing software,
are you running your workload on identical hardware?
Identical data, with identical formats and compression? Did
the test procedure or test harnesses change?

3 NOT TESTING AT SCALE

Big data is called big for a reason. Testing small workloads
on small clusters and expecting the results to extrapolate to
large scale systems simply does not work.

“Scale” for big data systems can mean data scale, concur-
rency scale (number of jobs and number of tasks per job),
cluster scale (number of nodes/racks), or node scale (per
node hardware size). Failing to test “at scale” for any of
these dimensions can lead to surprising behavior for your
production clusters.

It is illustrative to look at another aspect of our efforts to
drive MR2 to performance parity with MR1. We wanted to
verify that MR2 and MR1 perform at parity when a large
number of jobs are running. We ran SWIM [6], which sub-
mits many jobs concurrently over hours or even days, simu-
lating the workload logged on actual production clusters.
The first runs of SWIM on MR2 revealed a live-lock issue [7]
where the jobs would appear as submitted, but none of
them would make any progress. Fig. 2 shows a web user-
interface (UI) screenshot of a YARN Resource Manager that
is experiencing live-lock.

The cause of the live-lock is not straightfoward. Each
MR2 job has an Application Master, which is a book-keep-
ing type task that tracks the progress of the entire job. The
Application Master still requires a YARN container to run.
Without additional configurations, YARN would give all
available resources to the Application Masters, leaving no
room for the actual tasks. The tasks are behaving normally,
but making no progress, i.e., live-lock.

This issue escaped detection in our other scale tests that
covered a range of data, cluster, and node scales. The live-
lock occurs only when all the containers in a cluster are
taken up by Application Masters. On a cluster of non-trivial
size, this means hundreds or even thousands of concurrent
jobs. SWIM is specifically designed to reveal such issues by
replaying production workloads with their original level of
concurrency and load variation over time. In this case, we
found a critical issue.

4 BELIEVING IN MIRACLES

If something is too good to be true, it is probably not true.
We should always have a model of expected system behav-
ior and bottlenecks. This way, we can tell if a performance
improvement is reasonable, or too good to be true. Here are
some recent “miracles” we debunked.

4.1 Miracle 1: 1,000x SQL Speedup

A customer reported that Impala [8], a SQL-on-Hadoop sys-
tem, performs more than 1000x better than their existing
relational database manage system (RDBMS). The customer
wanted us to help them set up a new cluster to handle their
growing production workload.

The 1,000x difference is orders of magnitude larger than
our own measurements [9], and immediately made us skep-
tical. Following much discussion, we realized that the cus-
tomer was comparing very simple queries running on a
proof-of-concept Impala cluster versus complex queries
running on a heavily-loaded production RDBMS system.

We helped the customer do an apple-to-apple compari-
sons, and turns out Impala still has an advantage (average

Fig. 1. Terasort performance when the data generation in MR1 and MR2
use different algorithms (left) or the same algorithm (right).
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2x faster and up to 4.5x faster, from [9]). We left the cus-
tomer with realistic plans for how to grow their data man-
agement systems.

4.2 Miracle 2: Indirect Writes Faster than Direct
Writes

A customer asked us to run several configurations of
Sqoop [10], a Hadoop-to-RDBMS connector used to bulk
transfer data between the two types of systems. The intent
was to find the configuration leading to the best perfor-
mance of exporting data from Hadoop to RDBMS. Among
other tests, we compared the performance of loading data
to new partitions through Oracle’s direct path writes, to
loading the same data through normal inserts.

We expect direct path writes to be significantly faster,
since they bypass the busy buffer-cache and redo log sub-
systems, writing data blocks directly to Oracle’s data files.
In this test, the normal inserts exercising an indirect write
path were three times faster than the direct path writes.
This suspicious result called for additional investigation.

The investigation revealed that Sqoop was exporting
around 50 GB of data to an otherwise idle Oracle cluster
with over 300 GB of memory dedicated to the buffer cache.
Loading data into memory in a server with no contention is
obviously faster than writing the same data to disk. We
explained the results to the customer and recommended
repeating the tests on a cluster with realistic workloads.

4.3 Miracle 3: 100x Hadoop Sort Speedup

A customer asked us for comment on a Hadoop sort bench-
mark result in the trade press. The result was more than
100x faster than what we found internally.

It turns out that the data size being tested was consider-
ably smaller than the available memory in the cluster. In

other words, a knowledgeable operator would be able
to configure Hadoop in a way that the sort takes place
completely in memory.

This departed from the common practice of configuring
sort with data size much greater than total cluster memory.
The more-than-100x gap came from the inherent hardware
difference between memory and disk IO, rather than a dif-
ference between two software systems.

The ability to identify miracles requires us having mod-
els of expected performance beyond just a “gut-feeling”.
These models can come from prior results, or an under-
standing of where the system bottlenecks should be. Bench-
marking without such models would give you a lot of
numbers but not a lot of meaning.

5 USING UNREALISTIC BENCHMARKS

Unrealistic benchmarks are benchmarks where the work-
load, hardware, or presentation is chosen without regard of
real-life requirements. Rather, these choices intend to inflate
the capabilities of benchmarked system under test. Here are
some warning signs of a biased benchmark:

5.1 Misleading Workloads

Examples of misleading workloads include when someone
ran benchmarks on 100 GB of data when the system is
intended for 100 TB data sets, or when a transactional work-
load is used to test a system with mostly analytical use-
cases. Terasort, a very popular benchmark for big data sys-
tems, is also potentially misleading. Terasort has very spe-
cific characteristics that stress very specific subsets of the
processing subsystem. It is not necessarily a good bench-
mark to evaluate how the system will scale for all work-
loads, even though it is a useful first step in comparing
different hardware configurations.

Fig. 2. YARN resource manager screenshot of live-lock symptoms.
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An example of how we avoid it at Cloudera: Terasort is
only one job in our MapReduce performance benchmarking
suite. We run a set of stand-alone, artificial jobs designed to
stress in isolation different components of the MapReduce
IO and compute pipeline; this suite includes open source
jobs such as Terasort, and some jobs written in-house that
we consider proprietary assets. We also use an open source
tool [6] to replay full customer workloads with a large range
of job sizes, types, and arrival patterns. We run both the
stand-alone jobs and multi-job workloads under different
dimensions of scale beyond just data size (See Section 3).

5.1.1 What Makes a Representative Workload?

Cluster operators often find it challenging to reason about
their own workload. If someone has no idea what their pro-
duction workload looks like, they will have no idea whether
the workload captured in a benchmarking study will match
their own use case.

Fig. 3 is a diagram to help readers characterize their
workload. In broad strokes, there are three dimensions—the
data characteristics, the compute characteristics, and the
load-over-time characteristics [11]. Readers should ask
themselves what is the following for their workload:

Data:

� How large is the data?
� What is the data schema, i.e., how do different parts

of the data relate to each other?
� Is there any data skew, i.e., whether some data is

accessed more frequently than others?
� How is the data represented and stored, i.e., what is

the data format or data type?

Compute:

� What is the hardware bottleneck for the computation
done? CPU, memory, disk, or network?

� If the workload is a SQL workload, whether the
queries involve joins, scans, filters, group-by’s?

� If the workload is MapReduce, whether the jobs
need to do a lot of shuffle, sort, combiner operations,
are they map-heavy or reduce heavy?

� If the workload is something else, characterize it in
terms of the semantics of that processing paradigm.

Load:

� What is the load average?
� How long and how high are bursts in load?

� How do the mix of jobs or queries change over time?
� Are there diurnal patterns?
These questions should get readers started on character-

izing their own workload. Answering these questions direct
the discussion to other, more complicated, case-by-case
characteristics that are also important to capture.

In a real-world example, we start by identifying the pri-
mary components of a production workload. If, say, Map-
Reduce, HBase, and Impala are all involved, we need to
make sure the test workload combines all of those. Drilling
farther in, we may see that most of the MapReduce work-
load is map-only, with very little data being shuffled or
reduced. We may also see that the HBase workload is 75
percent put and 20 percent get and 5 percent scans, and the
Impala workload consists of star-schema joins that include
one large table and many smaller tables, the results of which
will be aggregated by day and month. We make sure our
benchmark workload includes this level of details.

The next step is to note the data sizes, and either copy
sufficient data from production, or write a small script that
will generate synthetic data for the benchmark. It is recom-
mended to note specific data patterns that should be part of
the test—for example, if the workload involves sales data, it
is likely that some regions and dates have significantly
more records than others. This type of skew can impact per-
formance and therefore benchmark results.

The last step is to check characteristics of the load pat-
terns. Start with finding out how many concurrent jobs and
queries typically run in production. Then decide whether to
test with average load, peak load, expected future peak
load, or perhaps the test should increase the load to the
point the system breaks in order to find theoretical limits
(test to destruction). Since multiple workloads are involved
(MapReduce, Impala and HBase), we need to know if those
workloads are typically executed together, or if they run
during different times. For example, if we run Impala
queries mostly during business hours and MapReduce dur-
ing the night, the test should combine light Impala load
with heavy MapReduce load and vice-versa, to simulate
expected production conditions.

This type of planning leads to more meaningful results
and is well worth the extra effort.

5.2 Premium Hardware

Benchmark reports often contain results that come from
hardware not typically used in real-life—solid state drives
(SSDs) in environments that commonly use hard disk drives
(HDDs), or premium SSDs not available in the general mar-
ket. The Transaction Processing Council - C (TPC-C) [12]
benchmark allows the use of hardware that is not available
provided that availability dates are published. It is wise to
check if the hardware choices make results irrelevant for
guiding purchase decisions.

An example of how we avoid it at Cloudera: We have
explored MapReduce performance for SSDs [13]. We were
very conscious of SSD’s prevalence in the market compared
with HDDs. This prompted us to suggest to our hardware
partners to track SSD performance-per-cost, which shows
SSDs approaching parity with HDDs, even though the gap
in capacity-per-cost remains large.

Fig. 3. Different dimensions of a big data workload.
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5.3 Cherry Picking Queries or Jobs

Some reports pick very specific queries out of a standard
benchmark, but cannot explain the choice with objective cri-
teria that is relevant to the real-life use cases (or worse, does
not disclose that a choice was made).

An example of how we avoid it at Cloudera: Our past
Impala performance results [9], [14] used 20 queries derived
from the TPC - Decision Support (TPC-DS) [15] benchmark.
These queries were chosen based on what our customers
observed for business intelligence (BI) use cases. They cover
interactive, reporting, and deep analytic use cases. At the
time, it was a major improvement over a frequently cited
set of five queries [16] that were constructed without empir-
ical backing from actual customer use cases. The 20 queries
also represent a step forward from our own early efforts [17]
using queries derived from TPC-H [18]. TPC-H is a less
demanding benchmark with fewer and less complex
queries than TPC-DS, while both are backed by customer
surveys from vendors in the TPC Consortium. We have
kept the set of 20 queries derived from TPC-DS to help our-
selves compare against our own prior results, and we are
well aware they are less than the full set of 99 queries in the
official TPC-DS. Look for our future reports in this space.

5.4 Questions to Ask All Benchmark Reports

To an extent all commercial and even research benchmarks
are suspect of bias, since they are performed by a specific
vendor or research group to promote their products or
search project. Cluster operators can hold benchmark
reports accountable by understanding their own workload
and have a conversation about whether a product or
research project addresses their specific use case. The fol-
lowing is a list of questions to ask.

� What hardware did you use?
� How was it configured?
� Is it similar to the hardware you are selling?
� Which jobs or queries did you run?
� Why do you think they mimic my workload?
� Were they modified from a well-known spec?
� How did you choose these specific jobs or queries?
� What if the jobs or queries are different?
With these questions, cluster operators force benchmark

reports to discuss the limits of their own work.

6 (MIS)COMMUNICATING RESULTS

Poor communication detracts from otherwise good perfor-
mance results. Here at Cloudera, we check all external-fac-
ing benchmarking communications for the following:

We select a benchmark that

� Is unbiased (see Section 5),
� Exercise workloads relevant to actual customers, and
� Scales across data size, concurrency level, cluster

size, and node size.
We report sufficient information for industry peers to

assess the significance of the result, and to reproduce the
tests if needed. This requires reporting

� The benchmark used and why we chose it,
� The metrics used and how we measured them,
� The hardware used and the software tuning applied.

These simple guidelines are often neglected in results
coming from both industry and academia.

One more aspect of a good benchmarking report is
whether the results have been independently verified or
audited. The purpose of an independent audit is to have
the above checks done by someone other the organization
that produced study. Results that passed independent
audit are more likely to be communicated clearly and
completely.

There are several gold-standards for audit and verifica-
tion practices established before the rise of big data:

Dedicated auditors. The Transaction Processing Council
(TPC) [19] uses dedicated auditors. Each auditor is certified
to audit a particular benchmark only after passing a test
designed by the working group who initially specified that
benchmark [20].

Validation kit and fair-use rules. The Standard Performance
Evaluation Corporation (SPEC) [21] uses validation checks
built into benchmarking kits, fair-use rules governing how
the results should be reported, and review by the SPEC
organization, which encompasses many industry peers of
the test sponsor.

Peer review. The official Sort Benchmark [22] has new sub-
missions reviewed by past winners. The winners would
“hand over the torch” only if new entries are sufficiently
rigorous.

There are not yet any widely accepted audit and verifica-
tion processes for big data. The need for complete and neu-
tral benchmarking results sometimes gets diluted by the
need to stand out in the trade press. However, the past year
has seen a phenomenal growth in the level of performance
knowledge in the broader technical community. Every
benchmark report is now scrutinized by industry and aca-
demia peers. This increases the need to be rigourous and
open about performance benchmarking results.

6.1 A Picture in Need of 1,000 Words

Performance reports often use graphs to summarize results.
Poor graphs can unintentionally or deliberately mislead
readers. We include here an example of a poorly-communi-
cated graph and a better-communicated graph.

Fig. 4 comes from one of the author’s early work measur-
ing the performance of distributed databases. None of the
axes were labeled, the performance metrics are unclear, and

Fig. 4. An example of a poorly-communicated graph.
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the test scenario and test settings are unclear. Even the
graph’s creator cannot recollect what was being displayed.

Here is what the authors together deciphered. The graph
is showing database throughput measured in transactions
per minute (TPM), query latency (response time), and CPU
utilization of the system. The horizontal axis is likely show-
ing the number of concurrent user or a similar sense of
“load”. CPU utilization increases under higher load, and
the right vertical axis is of the correct numerical range for
CPU utilization in percentages. The left vertical axes could
be either TPM in number of queries, or response time in
milliseconds. There is no way to tell without additional
information. Without proper labeling and documentation,
every well-done performance benchmarking studies lose
their meaning over time.

Fig. 5 appears in a recent Cloudera blog [17]. It is a better
communicated graph. Without further text, here is what the
figure communicates: The graph shows Impala multi-tenant
performance, with the metric being a normalized, unitless
metric of multi-tenant performance as a fraction of stand-
alone performance. This metric has the property that
“higher is better”. The graph comes from five tests, with
Impala receiving an increasing fraction of system resources
ranging from 25 to 75 percent. There is large performance
variation as shown by the error bars. There is also a model
of desired system behavior, one that suggests Impala should
show fraction x of stand-alone performance when given
fraction x of system resources.

There is still a lot of information missing from the graph:
What was the workload being tested? It was Impala running

concurrently with MapReduce on the same cluster, specifi-
cally one MapReduce job concurrent with one Impala query
at a time. The cluster is configured to give fraction x of the
resources to Impala, with MapReduc receiving the remain-
ing fraction 1� x.

What metric is being normalized? Impala query duration
when the cluster is executing only the Impala query versus
when the cluster is executing an Impala query with a Map-
Reduce job.

What do the error bars show and why are they so large? Each
data point is the arithmetic average of 56 MapReduce job
and Impala query combinations. The 56 job-query combina-
tions cover a large range of MapReduce job types and
Impala query types, hence the large variation. The error

bars themselves represent 25th to 75th percentile range
across the job-query combinations.

What fractions of resources were assigned to Impala for the sec-
ond and fourth markers? It is not immediately clear from the
ticker mark intervals on the horizontal axes, but the second
and fourth markers represent 40 and 60 percent of the clus-
ter resourcess assigned to Impala.

What about MapReduce multi-tenant performance? The
companion graph for MapReduce multi-tenant performance
is Fig. 6.

The graph guides the discussion to more interesting
topics, such as why should the performance model be as it
is, whether the test workload is realistic and useful, and
whether the performance is actually good.

The following is a list we use to check our own graphs.

� Does the graph need a title, or is one unnecessary
based on surrounding text?

� If the graph shows multiple data series, is a legend
displayed or included in the graph caption?

� Are the graph axes labeled? Do the labels include
appropriate units?

� Is there one or several performance metrics being
graphed?

� If there is a single performance metric graphed, is it
on the vertical axes?

� As big data performance is variable from measure-
ment to measurement, are error bars necessary?

� If a line or curve is drawn connecting two markers, is
it reasonable to extrapolate across a range of unmea-
sured settings?

� If there is a model of desirable behavior, is the model
also shown on the graph?

Big data systems have evolved to the point where the
meaning of performance can be complex, and the number
of relevant metrics can be large. This is especially true when
we consider different big data processing engines not as
stand-alone components, but as concurrently active frame-
works sharing resources on the same cluster. Thus, we
should make every effort to ensure clear communication.

6.2 Following Our own Advice—Miracle Checking

Earlier we highlighted the need to check any miracle results
for their validity. In Fig. 5, the fact that multi-tenant perfor-
mance turned out better than modeled is an immediate

Fig. 5. An example of a better-communicated graph. It still needs a lot of
surrounding text for a full explanation.

Fig. 6. Companion graph to Fig. 5, showing MapReduce multi-tenant
performance.
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warning sign for a possible “miracle” result. Since Impala and
MapReducewere concurrently active for themulti-tenant sce-
nario, the results would be reasonable if MapReduce multi-
tenant performance suffered and was lower than modeled.
The opposite happened, and the companion MapReduce
multi-tenant performance also exceeded our model (Fig. 6).
Thiswas indeed a “miracle” result worth understanding.

Two factors caused this result. First, our test scenarios
run through 56 pairs of concurrent MapReduce jobs and
Impala queries, one pair at a time. For any given pair, either
the MapReduce job or Impala query would complete first.
Thereafter, the remaining MapReduce job or Impala query
would receive the entire cluster’s resources. In other words,
our test procedure systematically skewed the results in
favor of being better than the model.

Another reason is the statistical multiplexing of hard-
ware resource demands. This is a subtle effect of multi-ten-
ant processing. For our tests, a MapReduce job and an
Impala query need different hardware resources at different
times. The resource demands are frequently not overlap-
ping, i.e., statistically multiplexed. This multiplexing hap-
pens due to the range of processing covered in the 56 job-
query pairs and the different design of the MapReduce and
Impala processing engines. In other words, the cluster hard-
ware is better utilized when there are different kinds of
processing present on the system.

Understanding the cause of this “miracle” result helped
us improve our test scenario. Our latest multi-tenant work-
loads run many concurrent Impala queries and MapReduce
jobs, so that the system resources are fully utilized regard-
less of statistical multiplexing. Also, we run continuous
streams of MapReduce jobs and Impala queries, such that
for the duration of measurement, there will always be two
different frameworks competing for resources.

7 PRACTITIONER USE OF BENCHMARKS

There are few cases when a big data practitioner would
need to run a benchmark:

� Validating an existing system following a system
upgrade or migration

� Compare between technologies for a new system
� Assessing the impact of workload changes
In our experience, benchmarks are used in different ways

in each scenario.
When upgrading or migrating an existing system, bench-

marks validate whether the new infrastructure delivers
expected performance. It is key to ensure apples-to-apples
comparisons between different setups.

The new infrastructure should be validated with the
existing workload. If the workload includes batch jobs, sim-
ply replicating data to the new system and running the
batch jobs is all that is required. If the workload is more
interactive, then a load-generation harness such as HP Loa-
dRunner [23] or Apache JMeter [24] is often used.

In some cases, the specific production workload cannot
be replicated in the new environment. In those cases, it is
very common to choose an industry standard benchmark to
try to emulate the production workload.

When trying to compare technologies for a newly
designed system, insist on full disclosure, and make sure

the benchmarks used are a good substitute for the workload
planned for the cluster. Specifically, ensure the benchmark
report makes apples-to-apples comparisons against compet-
ing technologies.

Some common benchmarks used include: Terasort and
SWIM [6] for MapReduce, TPC-DS [15] and TPC-H [18] for
SQL-on-Hadoop, and YCSB [25] for NoSQL key-value
stores. Depends on the workload planned for the cluster,
they may or may not be appropriate.

The gold standard for validating results is independent
audit. Some commericial vendors who use industry stan-
dard benchmark show such results. An alternative to inde-
pendent audit is to try to reproduce the reported results on
a pre-production environment. We have seen cases where a
published performance result cannot be reproduced on
identical trial systems provided by cluster operators.

When running a home-grown benchmark kit based on
real workloads, independent audit is nearly impossible and
reproducing the result may simply reproduce built-in
errors. There, a good practice is to compare the measured
performance to published results of similar systems, review
the differences, and see whether the performance differen-
ces can be explained with a reasonable model. We discussed
some examples of reviewing differences in Section 2 and the
importance of performance models in Section 4.

8 RELATED WORK

8.1 Qualities of a Good Benchmark

The criteria for a good performance benchmark have been
the topic of decades of publications [26], [27], [28]. Prior
work has identified the following essential properties:

� Representative: The benchmark should measure per-
formance under real life environments and use met-
rics that are relevant to real life applications.

� Portable: The benchmark should be fair and portable
to competing solutions that target the needs of the
same applications.

� Scalable: The benchmark should measure the perfor-
mance of systems within a wide range of scale. As
technology progresses, systems increase in scale and
performance capabilities. The benchmark should be
able to accommodate for that increase.

� Verifiable: The benchmark should prescribe repeat-
able measurements that produce the same results
and can be independently verified.

� Simple: The conceptual elements of the benchmark
should be reduced to a minimum and made easily
understandable. The benchmark should also abstract
away details that represent case-by-case configura-
tions or system administration choices that do not
affect performance.

Selecting a benchmark with the above qualities is a first
step towards addressing many of the pitfalls identified:
non-representative benchmarks lead to the unrealistic
benchmarks pitfall, non-portable benchmarks make it easier
to commit the comparing apples-to-oranges pitfall, non-
scalable benchmarks lead to the not testing at scale pitfall,
non-verifiable benchmarks make it easier to believe in
miracles, non-simple benchmarks make it easier to miscom-
municate results.
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Unfortunately, the crowded field of emerging big data
benchmarks often fall short on the “representative” charac-
teristic. The two most critical shortcomings we see are (1)
failing to capture a multi-job, multi-query workload and (2)
failing to provide empirical evidence to justify the choice of
jobs, queries, and data that are included in the benchmark.
Our prior work [29] contains a critique of several recent big
data benchmarks.

8.2 Successful Benchmarks and Their Making

A few benchmarks have reached the level of active industry
standards. When it comes to benchmarks measuring com-
plete or end-to-end systems, two organizations have domi-
nated: SPEC and TPC.

Each organization has published a number of bench-
marks with various degrees of success. One criteria for suc-
cess is the level at which the benchmark is being used by
various organizations. While internal use is difficult to
quantify, external publication of benchmark results is easy
to tally and represents a clear success criteria. Table 1 shows
the most published benchmarks from TPC [19] and
SPEC [21].

Of these benchmarks, TPC-C and TPC-D/H followed a
similar process of finding representative customer work-
loads that provide insight regarding how to create a big
data benchmark. Little has been written about the insider’s
views of the benchmarks definition process. The making of
TPC-C is published only recently [30].

The key ideas from this process are:

� Ground the benchmark based on empirical survey of
customer use cases, in TPC-Cs case a survey of hun-
dreds of customers across multiple countries.

� Develop abstract functions, datasets, and execution
scheduling models that cover common characteris-
tics across use cases without being burdened by the
specific quirks of any single use case.

� Specify the benchmark in a technology agnostic fash-
ion to ensure the benchmark is portable.

� Specify the benchmark with special attention to how
should the benchmark scale the functions, datasets,
and execution scheduling.

� Build the benchmark execution harness with special
attention to how the harness can scale without add-
ing overhead.

� Ensure the benchmark behaves deterministically, or
at least within statistical bounds, so that the bench-
mark can be rigorously audited.

The authors are involved in ongoing efforts to develop
the TPC Decision Support (TPC-DS) benchmark for big
data. These considerations present some of the hardest

technical challenges, especially because the benchmark has
to ensure the results have technical merit despite competing
commericial interests from different test sponsors.

8.3 Parametric versus Empirical Models

A more theoretical consideration brought about by big data
concerns what kind of models benchmarks should employ
to generate the load and the data. The traditional approach is
to use analytical models with a small number of parameters.
For example, a common parametric model for arrival pat-
terns is the Poisson ormemoryless arrivalmodel, used previ-
ously to generate network traffic [31]. A common parametric
model for data patterns is the Zipf or long-tail frequency
model, used for populating synthetic databases [32].

This approach works less well for big data, because the
complex, diverse, non-stationary nature of the customer
workloads make it hard to capture representative behavior
using simple statistical processes with a small number of
parameters. An alternative is to use empirical models, where
theworkload traces are themodel. One can think of empirical
models asmodels with an infinite number of parameters.

Recent work has started shifting towards empirical mod-
els, for example, showing that TELNET and FTP session
arrivals approximate Poisson processes whose average
arrival rates are empirical constants that change at the
hourly or finer granularity [31]. A recent and successful
MapReduce benchmark uses a fully empirical model, with
the benchmark test workload being a statistical sample of
the original historical workload trace [6].

The shift is an interesting one, because it illustrates that
big data benchmarks sometimes need to compromise sim-
plicity (favoring analytic models) to achieve representative-
ness (favoring empirical models). Furthermore, both kinds
of models will fail to completely capture complex, non-sta-
tionary behavior [33].

Once people reading benchmark results and people pro-
ducing benchmark results get past the basic pitfalls dis-
cussed earlier, they would confront deeper technical
challenges such as the choice of benchmark models, and
whether that helps or hinders understanding system behav-
ior in real-life.

9 CONCLUSION

Performance benchmarking is a challenging task. When
done well, benchmarks can guide ourselves as well as the
community. Cloudera is a leading vendor in big data, and
we make special effort to ensure our performance studies
are fair, rigorous, and thus useful to ourselves and our cus-
tomers. The stories here show that even with good intent
and best practices, performance benchmarking is fraught
with challenges. Anyone can make benchmarking errors,
everyone can learn from them, and everyone can benefit
from reviewing their own work.
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TABLE 1
Benchmark Result Publications

Benchmark Publications
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TPC-C 760
SPEC SFS 730
SPECweb (96-2009) 700
TPC-D/H 650
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