
The Truth About MapReduce Performance on SSDs
Karthik Kambatla†‡, Yanpei Chen†

{kasha, yanpei}@cloudera.com
†Cloudera Inc.

‡Dept. of Computer Science, Purdue University.

Abstract

Solid-state drives (SSDs) are increasingly being consid-
ered as a viable alternative to rotational hard-disk drives
(HDDs). In this paper, we investigate if SSDs improve
the performance of MapReduce workloads and evalu-
ate the economics of using PCIe SSDs either in place
of or in addition to HDDs. Our contributions are (1)
a method of benchmarking MapReduce performance on
SSDs and HDDs under constant-bandwidth constraints,
(2) identifying cost-per-performance as a more pertinent
metric than cost-per-capacity when evaluating SSDs ver-
sus HDDs for performance, and (3) quantifying that
SSDs can achieve up to 70% higher performance for 2.5x
higher cost-per-performance.

Keywords:. MapReduce, Analytics, SSD, flash, perfor-
mance, economics.

1 Introduction

Solid-state drives (SSDs) are increasingly used for a va-
riety of performance-critical workloads, thanks to their
low latency (lack of seek overheads) and high throughput
(bytes-per-second and IOPS). The relatively high cost-
per-capacity of SSDs has limited their use to smaller
datasets until recently. Decreasing prices [16] and low
power-consumption [13] make them a good candidate for
workloads involving large volumes of data. The lack of
seek overhead gives them a significant advantage over
traditional hard disk drives (HDDs) for random-access
workloads such as those in key-value stores. The gains
are less clear for sequential access workloads.

In this paper, we investigate the economics of using
SSDs to improve the performance of MapReduce [8], a
widely-used big-data analytics platform. As MapReduce
represents an important software platform in the datacen-
ter, the performance tradeoffs between SSDs and HDDs
for MapReduce offers critical insights for designing both
future datacenter server architectures and future big-data
application architectures.

MapReduce is traditionally considered to be a se-
quential access workload. A detailed examination of
the MapReduce IO pipeline indicates that there are IO
patterns that benefits from the hardware characteristics
of SSDs. Past studies on MapReduce SSD perfor-

mance have not yet accurately quantified any perfor-
mance gains, mostly due to previous hardware limits
constraining studies to be simulation based, on unreal-
istic virtualized environments, or comparing HDD and
SSD setups of different bandwidths (Section 2).

Our MapReduce benchmarking method seeks to com-
pare HDDs and PCIe SSDs under constant bandwidth
constraints (Section 3). We selected our hardware to an-
swer the following questions: (1) when setting up a new
cluster, how do SSDs compare against HDDs of same
aggregate bandwidth, and (2) when upgrading an HDDs-
only cluster, should one add SSDs or HDDs for better
performance. We measured performance for a collec-
tion of MapReduce jobs to cover several common IO and
compute patterns.

Our results quantify the MapReduce performance ad-
vantages of SSDs and help us identify how to config-
ure SSDs for high MapReduce performance (Section 4).
Specifically, we find that

1. For a new cluster, SSDs deliver up to 70% higher
MapReduce performance compared to HDDs of
equal aggregate IO bandwidth.

2. Adding SSDs to an existing HDD cluster improves
performance if configured properly. SSDs in hybrid
SSD/HDD clusters should be divided into multiple
HDFS and shuffle local directories.

Beyond the immediate HDD versus SSD tradeoffs, a
broader implication of our study is that the choice of stor-
age media should consider cost-per-performance in ad-
dition to the more common metric of cost-per-capacity
(Section 5). As a key benefit of SSDs is performance,
one can argue that cost-per-performance is the more im-
portant metric. Our results indicate SSDs have 2.5x
higher cost-per-performance for MapReduce, while de-
livering up to 70% higher performance. This gap is far
smaller than the orders-of-magnitude difference in cost-
per-capacity.

2 Background and Related Work

2.1 SSDs vs HDDs
The biggest advantage of SSDs over HDDs is the high
IOPS. SSDs achieve this by avoiding the physical disk
rotation and seek time. The sequential IO bandwidth is

1

Figure 1: MapReduce Dataflow. Source: [19]

also higher: by measuring the time taken to copy a large
file, we found our HDDs could each support ∼120MBps
of sequential read or write, while our SSDs were each
capable of ∼1.3GBps sequential read or write.

The performance benefits of SSD compared to HDDs
depend on the workload. For sequential I/O workloads,
one can use multiple HDDs in parallel (assuming the
application allows parallel access) to extract bandwidth
comparable to SSD. For example, one can use 10 HDDs
of 120MBps to match the 1GBps bandwidth of an SSD.
On the other hand, realizing comparable bandwidth for
random I/O workloads can be far more expensive, as one
would need many more HDDs to offset the seek latency.
For example, if an HDD delivers an effective bandwidth
of 10 MBps for random accesses of a few MBs of data
each IO, one needs to use at least 100 of them to achieve
the same 1GBps aggregate bandwidth.

2.2 MapReduce – Dataflow

MapReduce [8] is a data-parallel processing framework
designed to process large volumes of data in parallel on
clusters of machines. In Apache Hadoop [1], a widely-
used open-source MapReduce implementation, the exe-
cution is split into map, shuffle, reduce phases. Map and
reduce phases are split into multiple tasks, each task po-
tentially running on a different machine. Each map task
takes in a set of key-value pairs (< key, value >: list),
applies the map function to each pair and emits another
set of key-value pairs (< key, value >: list). The shuf-

fle phase partitions the map output from all map tasks
such that all values corresponding to a key are in the
same partition (< key, value : list >: list), each parti-
tion can be on a different node. Each reduce task picks
these partitions, applies the reduce function per key, and
writes the output to HDFS. Figure 1 captures the flow of
data in a typical MapReduce job.

The effect of storage media, particularly SSD versus
HDD, depends on the average read/write size and the
randomness of data accesses. A typical MapReduce job
exhibits two kinds of data accesses:

Large, sequential HDFS accesses. The job reads input
splits from HDFS initially, and writes output partitions
to HDFS at the end. Each task (dotted box) performs
relatively long sequential IO of 100s of MBs. When
multiple tasks are scheduled on the same machine, they
can access the disks on the machine in parallel, with
each task accessing its own input split or output parti-
tion. Thus, an HDD-only configuration of 11 disks of
120MBps each can potentially achieve HDFS read/write
bandwidth comparable to a SSD drive of 1.3GBps.

Small, random reads and writes of shuffle intermedi-
ate data. MapReduce partitions each map output across
all the reduce tasks. This leads to significantly lower
IO size. For example, suppose a job has map tasks that
each produces 1GB of output. When divided among, say,
1,000 reduce tasks, each reduce task fetches only 1MB.
Analysis of our customer traces indicate that many de-
ployments indeed have a per-reduce shuffle granularity

2

Table 1: Storage configurations used
Setup Storage Capacity Sequential Price (USD)

R/W Bandwidth
HDD-6 6 HDDs 12 TB 720 MBps 2,400
HDD-11 11 HDDs 22 TB 1300 MBps 4,400

SSD 1 SSD 1.3 TB 1300 MBps 14,000
Hybrid 6 HDDs + 1 SSD 13.3 TB 2020 MBps 16,400

of just a a few MBs or even lower.
The number of concurrent accesses on a node deter-

mines the extent of I/O multiplexing on the disks, which
in turn depends on the stage of job execution. The num-
ber of map or reduce tasks per node determines the num-
ber of concurrent HDFS read/write accesses. During the
shuffle phase, the map-side sort IO concurrency is de-
termined by the total number of merge-sort threads used
across all map tasks on a node. The network copy con-
currency comes from the number of map-side threads
serving the map outputs and the number of reduce-side
threads remotely fetching map outputs. The reduce-side
sort IO concurrency is also determined by the number of
merge-sort threads on the node. In practice, independent
of IO concurrency, there is negligible disk I/O for inter-
mediate data that fits in memory, while a large amount of
intermediate data leads to severe load on the disks.

A further dimension to consider is compression of
HDFS and intermediate data. Compression is a common
technique to shift load from IO to CPU. Map output com-
pression is turned on by default in Cloudera’s distribu-
tion including Apache Hadoop (CDH), as most common
kinds of data (textual, structured numerical) are readily
compressible. Job output compression is disabled by de-
fault in CDH for compatibility with historical versions.
Tuning compression allows us to examine tradeoffs in
storage media under two different IO and CPU mixes.

Based on the MapReduce dataflow and storage media
characteristics, we hypothesize that:

1. SSDs improve performance of shuffle-heavy jobs.
2. SSDs and HDDs perform similarly for HDFS-read-

heavy and HDFS-write-heavy jobs.
3. For hybrid clusters (both SSDs and HDDs), using

SSDs for intermediate shuffle data leads to signifi-
cant performance gains.

4. All else equal, enabling compression decreases per-
formance differences by shifting IO load to CPU.

2.3 Prior work
A body of work on SSD performance for MapReduce
and other big data systems is still emerging. To date,
progress on this area has been limited by the cost and
(un)availability of SSDs.

An early work on HDFS SSD performance used OS
buffer cache to simulate a fast SSD [4]. The study fo-
cused on Apache HBase [2] performance, and found var-
ious code path bottlenecks in HDFS that prevented the
full potential of SSDs to be realized. Some of the bottle-
necks have since been eliminated from HDFS.

Another study used real SSDs, but on a virtualized
cluster, i.e., multiple virtualized Hadoop workers on a
single physical machine [12]. The experiments found
that Hadoop performs up to 3x better on SSDs. It remains
unclear how the results translate to non-virtualized envi-
ronments or environments where every virtualized node
is located on a separate physical node.

A recent follow up to [4] simulated SSD performance
as a tiered cache for HBase [9]. It found that under cer-
tain cost and workload models, a small SSD cache triples
performance while increasing monetary cost by 5%.

The closest work to ours compared Hadoop perfor-
mance on actual SSDs and HDDs [14], albeit on hard-
ware with non-uniform bandwidth and cost. The study
runs the Terasort benchmark on different storage config-
urations and found that SSD can accelerate the shuffle
phase of the MapReduce pipeline, as we already hypoth-
esized based on MapReduce IO characteristics.

Working with Cloudera’s hardware partners, we de-
signed our experiments to cover gaps in prior studies.
We compare MapReduce performance on actual HDDs
and SSDs, without virtualization, using storage hardware
of comparable bandwidths, with MapReduce configura-
tions optimized via experience at Cloudera’s customers.

3 Experimental setup

Our choice of hardware and MapReduce benchmarks is
guided by the following considerations:

• We compare SSDs vs HDDs performance under
equal-bandwidth constraints. An alternative is to
compare performance for equal-costs. We selected
the equal-bandwidth setup because it reveals the in-
trinsic features of the technology without the impact
of variable economic dynamics.

• We considered both SSDs/HDDs as storage for a
new cluster, and SSDs/HDDs as additional storage

3

Table 2: Descriptions of MapReduce jobs
Job Description
Teragen HDFS write job, with 3-fold replication that heavily uses the network.
Terasort Job with 1:1:1 HDFS read, shuffle, and HDFS write.
Teravalidate HDFS read-heavy job that also does sort order validation (mostly HDFS read),

with some small IO in shuffle and HDFS write.
Wordcount CPU-heavy job that heavily uses the map-side combiner.
Teraread HDFS read-only job, like Teravalidate, except no sort order validation and no reduce tasks.
Shuffle Shuffle-only job, modified from randomtextwriter in hadoop-examples.
HDFS Data Write HDFS write-only job, like Teragen, except with 1-fold replication.

Table 3: Data size and CPU utilization for the MapReduce jobs. Values are normalized against Terasort.
Job Input size Shuffle size Output size CPU utilization

Teragen 0 0 3 0.99
Terasort 1 1 1 1.00

Teravalidate 1 0 0 0.60
Wordcount 1 0.07 0.09 1.47

Teraread 1 0 0 1.23
Shuffle 0 1 0 1.01

HDFS Data Write 0 0 1 0.93

to enhance an existing HDD cluster. Both scenarios
are relevant and of interest to enterprise customers.

• Our benchmark includes a series of MapReduce
jobs to cover common IO and compute patterns
seen in customer workloads. We deliberately de-
ferred a more advanced method of measuring per-
formance for multi-job workloads [5, 6]. The stand-
alone, one-job-at-a-time method allows us to more
closely examine MapReduce and storage media in-
teractions without the impact of job scheduling and
task placement algorithms.

3.1 Hardware

We used PCIe SSDs with 1.3TB capacity costing
$14,000 each, and SATA HDDs with 2TB capacity cost-
ing $400 each. Each storage device is mounted with
the Linux ext4 file system, with default options and
4KB block size. The machines are Intel Xeon 2-socket,
8-cores, 16-threads, with 10Gbps Ethernet and 48GB
RAM. They are connected as a single rack cluster.

To get a sense of the user-visible storage bandwidth
without HDFS and MapReduce, we measured the du-
ration of copying a 100GB file to each storage device.
This test indicates the SSDs can do roughly 1.3GBps se-
quential read and write, while the HDDs have roughly
120MBps sequential read and write.

Table 1 describes the storage configurations we eval-
uate. The SSD and HDD-11 setups allow us to com-
pare SSDs vs HDDs on an equal-bandwidth basis. The

HDD-6 setup serves as a baseline of IO-constrained clus-
ter. The HDD-6, HDD-11, and Hybrid setups allow us to
investigate the effects of adding either HDDs or SSDs to
an existing cluster.

3.2 MapReduce jobs

Table 2 describes the MapReduce benchmark jobs that
we use. Each is either a common benchmark, or a job
constructed specifically to isolate a stage of the MapRe-
duce IO pipeline.

More details on the jobs and our measurement method:

• Each job is set to shuffle, read, write, or sort 33GB
of data per node.

• Where possible, each job runs with either a single
wave of map tasks (Teragen, Shuffle, HDFS Data
Write), or a single wave of reduce tasks (Terasort,
Wordcount, Shuffle).

• We record average and standard deviation of job du-
ration from five runs.

• We clear the OS buffer cache on all machines be-
tween each measurement.

• We used collectl to track IO size, counts, bytes,
merges to each storage device, as well as network
and CPU utilization.

Note that the jobs here are IO-heavy jobs selected and
sized specifically to compare two different storage me-
dia. In general, real-world customer workloads have a

4

Table 4: Performance-relevant MapReduce 2 configurations.
Configuration Value
mapreduce.task.io.sort.mb 256
mapreduce.task.io.sort.factor 64
mapreduce.task.io.sort.spill.percent 0.8
mapreduce.reduce.shuffle.parallelcopies 10
HDFS blocksize 128 MB
yarn.nodemanager.resource.memory-mb RAM size
yarn.nodemanager.resource.cpu-vcores # of CPU threads
mapreduce.map.memory.mb 1024
mapreduce.reduce.memory.mb 1024
mapreduce.map.cpu.vcores 1
mapreduce.reduce.cpu.vcores 1
mapreduce.map.java.opts -Xmx1000
mapreduce.reduce.java.opts -Xmx1000
yarn.scheduler.minimum-allocation-mb 256
mapreduce.job.reduce.slowstart.completedmaps 0.8
mapreduce.map.output.compress both true and false
mapreduce.output.compress false

variety of sizes and create load for multiple resources in-
cluding IO, CPU, memory, and network.

Table 3 shows, for each job, the data size at a given
stage of the MapReduce IO pipeline as well as the CPU
utilization for the HDD-6 setup. The data in the table
is normalized with Terasort as baseline. It quantifies the
MapReduce job descriptions in Table 2.

3.3 MapReduce configurations
Our experiments are run on MapReduce v2 on YARN,
which does not have the notion of map and reduce slots
anymore. Map and reduce tasks are run within “contain-
ers” allocated by YARN. Most of the MapReduce con-
figurations used in our tests come from the defaults in
CDH5b1. Table 4 lists performance-related configura-
tions and the values we used. These little-known pa-
rameters are often neglected in various studies, including
SSD-related prior work [12, 14] and dedicated MapRe-
duce configuration auto-tune systems [10].

Note that these configuration are intended to be per-
formance safe. For each particular customer use case and
hardware combination, we expect there is room for fur-
ther tuning using the values here as a starting point. Fur-
ther details about MapReduce performance tuning can be
found in references such as [19, 18, 17].

4 Results

We present the results of our benchmarking in the context
of these two questions: (1) for a new cluster, should one
prefer SSDs or HDDs of same aggregate bandwidth, and

(2) for an existing cluster of HDDs, should one add SSDs
or HDDs.

4.1 SSDs vs HDDs for a new cluster

Our goal here is to compare SSDs vs HDDs of the same
aggregate bandwidth. Let us look at a straight-forward
comparison between the SSD (1 SSD) and HDD-11 (11
HDDs) configurations. Figure 2 plots the job durations
for the two storage options; the SSD values are normal-
ized against the HDD-11 values for each job. The first
graph shows results with intermediate data compressed,
and the second one without.

General Trend. SSD is better than HDD-11 for all jobs,
both with and without intermediate data compression.
However, the benefits of using SSD vary across jobs.

Shuffle size determines the improvement due to SSDs.
SSD does benefit shuffle, as seen in Terasort and Shuffle
for uncompressed intermediate data. Shuffle read and
write IO sizes are small compared to that of HDFS, as
shown in Figure 3, and in agreement with our discussion
of MapReduce IO patterns earlier.

Map output compression masks any improvement
due to SSDs. This is evident in the data for Terasort and
Shuffle jobs in Figure 2. We believe this is due to shuf-
fle data being served from buffer cache RAM instead of
disk. The data in Terasort and Shuffle are both highly
compressible, allowing compressed intermediate data to
fit in the buffer cache. When we increase the data size
per job 10x, the SSD benefits are visible even with com-
pressed intermediate data.

5

0.00
0.20
0.40
0.60
0.80
1.00
1.20

HDD-11 SSD

(a) Intermediate data compressed

0.00
0.20
0.40
0.60
0.80
1.00
1.20

HDD-11 SSD

(b) Intermediate data not compressed

Figure 2: SSD vs HDD. Normalized job durations, lower is better.

0
250
500
750
1000

terasort teravalidate wordcount teraread

HDD SSD

(a) HDFS read IO sizes

0
250
500
750
1000

teragen terasort wordcount hdfsdatawrite

HDD SSD

(b) HDFS write IO sizes

0
250
500
750
1000

terasort wordcount shuffle

HDD SSD

(c) Shuffle read IO sizes

0
250
500
750
1000

terasort wordcount shuffle

HDD SSD

(d) Shuffle read IO sizes

Figure 3: SSD vs HDD read and write IO sizes for HDFS and shuffle data.

SSD also benefits HDFS read and write. A surpris-
ing result was that SSD also benefits HDFS read and
write, as indicated by Teragen, Teravalidate, Teraread,
and HDFS Data Write. Turns out that our SSD is capa-
ble of roughly 2x the sequential IO size of the hard disks
(see Figure 3). Also, note that these jobs do not involve
large amounts of shuffle data, so compressing intermedi-
ate data has no visible effect.

CPU heavy jobs not affected by choice of storage me-
dia. Wordcount is a CPU-heavy job that involves text
parsing and arithmetic aggregation in the map-side com-
biner. The CPU utilization was higher than that for other
jobs, and at 90% regardless of storage and compression
configurations. As the IO path is not the bottleneck, the
choice of storage media has little impact.

4.2 Adding SSDs to an existing cluster

Our goal here is to compare adding an SSD or many
HDDs to an existing cluster, and to compare the various

configurations possible in a hybrid SSD-HDD cluster.
We use a baseline cluster with 6 HDDs per node

(HDD-6). Adding an SSD or 5 HDDs to this baseline
results in the Hybrid and HDD-11 setups. On an equal
bandwidth basis, adding one SSD should ideally be com-
pared to adding 11 HDDs. Our machines do not have 17
disks; however, we believe the setups we have are enough
to give us helpful insights as discussed below.

Default configurations - Hybrid cluster sees lower
than expected benefit. Figure 4 compares job durations
for the HDD-6, HDD-11, and Hybrid setups; intermedi-
ate data is compressed in the first graph and not com-
pressed in the second. HDD-11 and Hybrid both give
visible improvement over HDD-6. However, even with
its additional hardware bandwidth (add 1 SSD vs. add 5
HDDs), the Hybrid setup leads to no improvement over
HDD-11. This observation triggered further investiga-
tions as discussed below.

Hybrid - when HDFS and shuffle use separate stor-
age media, benefits depend on workload. The default

6

0.00
0.20
0.40
0.60
0.80
1.00
1.20

HDD-6, baseline
HDD-11, added 5 HDDs
Hybrid, added 1 SSD

(a) Intermediate data compressed

0.00
0.20
0.40
0.60
0.80
1.00
1.20

HDD-6, baseline
HDD-11, added 5 HDDs
Hybrid, added 1 SSD

(b) Intermediate data not compressed

Figure 4: Add SSD/HDD to an existing HDD-6 cluster. Normalized job durations, lower is better.

0.00
0.20
0.40
0.60
0.80
1.00
1.20

HDD-6, baseline
Hybrid, default, HDFS and shuffle use all media
Hybrid, HDFS uses 6 HDDs, shuffle uses 1 SSD
Hybrid, HDFS uses 1 SSD, shuffle uses 6 HDDs

(a) Intermediate data compressed

0.00
0.20
0.40
0.60
0.80
1.00
1.20

HDD-6, baseline
Hybrid, default, HDFS and shuffle use all media
Hybrid, HDFS uses 6 HDDs, shuffle uses 1 SSD
Hybrid, HDFS uses 1 SSD, shuffle uses 6 HDDs

(b) Intermediate data not compressed

Figure 5: Hybrid modes. Normalized job durations, lower is better.

Hybrid configuration assigns HDDs and SSD to both the
HDFS and shuffle local directories. We test whether sep-
arating the storage media gives any improvement. Doing
so requires two more cluster configurations - HDDs for
HDFS with SSD for intermediate data, and vice versa.
Figure 5 captures the results of this experiment.

From the results, we see that the shuffle-heavy jobs
(Terasort and Shuffle) benefit from assigning SSD com-
pletely to intermediate data, while the HDFS-heavy jobs
see a penalty (Teragen, Teravalidate, Teraread, HDFS
Data Write). We see the opposite when the SSD is as-
signed to only HDFS. This is expected, as the SSD has
a higher bandwidth than 6 HDDs combined. However,
one would expect the simple hybrid to perform half way
between assigning SSD to intermediate data and HDFS.
This led to the next set of tests.

Hybrid - SSD should be split into multiple local direc-

tories. A closer look at HDFS and MapReduce imple-
mentations reveals a critical point — both the DataNode
and the NodeManager pick local directories in a round-
robin fashion. A typical setup would mount each piece of
storage hardware as a separate directory, e.g., /mnt/disk-
1, /mnt/disk-2, /mnt/ssd-1. HDFS and MapReduce both
have the concept of local directories; HDFS local direc-
tories store the actual blocks and MapReduce local di-
rectories store the intermediate shuffle data. One can
configure HDFS and MapReduce to use multiple local
directories, e.g, /mnt/disk-1 through /mnt/disk-11 plus
/mnt/ssd-1 for our Hybrid setup. When writing the in-
termediate shuffle data, the NodeManager picks the 11
HDD local directories and the single SSD directory in a
round-robin fashion. Hence, when the job is optimized
for a single wave of map tasks, each local directory re-
ceives the same amount of data, and faster progress on

7

0.00
0.20
0.40
0.60
0.80
1.00
1.20

HDD-6
HDD-11
Hybrid, default, SSD mounted as single dir
Hybrid, SSD split into 10 directories

(a) Intermediate data compressed

0.00
0.20
0.40
0.60
0.80
1.00
1.20

HDD-6
HDD-11
Hybrid, default, SSD mounted as single dir
Hybrid, SSD split into 10 directories

(b) Intermediate data not compressed

Figure 6: Hybrid with 10 data directories on SSD. Normalized job durations, lower is better.

Table 5: Cost Comparison
Setup Cost (US$) Capacity Bandwidth US$ per TB Cost per performance
Disk 400 2 TB 120 MBps 200 1x baseline
SSD 14,000 1.3 TB 1300 MBps 10,769 2.5x baseline

the SSD gets held up by slower progress on the HDDs.
So, to fully utilize the SSD, we need to split the SSD

into multiple directories to maintain equal bandwidth per
local directory. In our case, SSDs should be split into 10
directories. In our single-wave map output example, the
SSDs would then receive 10x the data directed at each
HDD, written at 10x the speed, and complete in the same
amount of time. Note that splitting the SSD into multiple
local directories improves performance, but the SSD will
fill up faster than the HDDs.

Figure 6 shows the performance of the split-SSD
setup, compared against the HDD-6, HDD-11, and
Hybrid-default setups. Splitting SSD into 10 local direc-
tories invariably leads to major improvements over the
default Hybrid setup.

5 Implications and Conclusion

Choice of storage media should also consider cost-
per-performance. Our findings suggest SSD has higher
performance compared to HDD-11. However, from an
economic point of view, the choice of storage media de-
pends on the cost-per-performance for each.

This differs from the cost-per-capacity metric ($-per-
TB) that appears more frequently in HDD vs SSD com-
parisons [16, 15, 11]. Cost-per-capacity makes sense for
capacity-constrained use cases. As the primary benefit of
SSD is high performance rather than high capacity, we

believe storage vendors and customers should also track
$-per-performance for different storage media.

From our tests, SSDs have up to 70% higher perfor-
mance, for 2.5x higher $-per-performance (Table 5, aver-
age performance divided by cost for the SSD and HDD-
11 setups). This is far lower than the 50x difference in $-
per-TB. Customers can consider paying a premium cost
to obtain up to 70% higher performance.

One caveat is that our tests focus on equal aggregate
bandwidth for SSDs and HDDs. An alternate approach
is to compare setups with equal cost. That translates to
1 SSD against 35 HDDs. We do not have the necessary
hardware to test this setup. However, we suspect the per-
formance bottleneck likely shifts from IO to CPU for our
hardware. The recommended configuration is 2 contain-
ers per core for MR2, and roughly one container per local
directory. On our hardware of 8 cores, having 35 HDDs
means either there would not be not enough containers
to keep all disks occupied, or there would be too many
containers that the CPUs are over-subscribed.

Choice of storage media should also consider the tar-
geted workload. Our tests here show that SSD benefits
vary depending on the MapReduce job involved. Hence,
the choice of storage media needs to consider the ag-
gregate performance impact across the entire production
workload. The precise improvement depends on how
compressible the data is across all datasets, and the ra-
tio of IO versus CPU load across all jobs.

8

Future work. MapReduce is a crucial component of En-
terprise data hubs (EDHs) that enable data to be ingested,
processed, and analyzed in many ways. To fully under-
stand the implications of SSDs for EDHs, we need to
study the tradeoffs for other components such as HBase,
SQL-on-HDFS engines such as Impala [7], and enter-
prise search platforms such as Apache Solr [3]. These
components are much more sensitive to latency and ran-
dom access. They aggressively cache data in memory,
and cache misses heavily affect performance. SSDs
could potentially act as a cost-effective cache between
memory and disk in the storage hierarchy. We need mea-
surements on real clusters to verify.

Overall, SSD economics involves the interplay be-
tween ever-improving software and hardware, as well as
ever-evolving customer workloads. The precise trade-off
between SSDs, HDDs, and memory deserves regular re-
examination over time.

References

[1] Apache Software Foundation. Apache Hadoop. http://
hadoop.apache.org, .

[2] Apache Software Foundation. Apache HBase. http:
//hbase.apache.org, .

[3] Apache Software Foundation. Apache Solr. http://
lucene.apache.org/solr/, .

[4] D. Borthakur. Hadoop and solid state drives.
Blog, http://hadoopblog.blogspot.com/2012/05/
hadoop-and-solid-state-drives.html.

[5] Y. Chen, S. Alspaugh, A. Ganapathi, R. Griffith, and
R. Katz. Statistical workload injector for mapreduce.
https://github.com/SWIMProjectUCB/SWIM/wiki, .

[6] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The Case
for Evaluating MapReduce Performance Using Workload
Suites. In MASCOTS 2011, .

[7] Cloudera Inc. Cloudera Impala. http://www.cloudera.
com/content/cloudera/en/products-and-services/
cdh/impala.html.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI 2004.

[9] T. Harter, D. Borthakur, S. Dong, A. Aiyer, L. Tang, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Analysis of
hdfs under hbase: A facebook messages case study. In
FAST 2014.

[10] H. Herodotou and S. Babu. Profiling, What-if Analysis,
and Cost-based Optimization of MapReduce Programs.
In VLDB 2011.

[11] J. Janukowicz. Worldwide solid state drive 20132017
forecast update. IDC Research Report, 2013.

[12] S.-H. Kang, D.-H. Koo, W.-H. Kang, and S.-W. Lee. A
case for flash memory ssd in hadoop applications. Inter-
national Journal of Control and Automation, 6(1), 2013.

[13] T. Kgil, D. Roberts, and T. Mudge. Improving nand flash
based disk caches. In ISCA 2008.

[14] J. Lee, S. Moon, Y. suk Kee, and B. Brennan. Introducing
SSDs to the Hadoop MapReduce Framework. In Non-
Volatile Memories Workshop 2014.

[15] J. Monroe and J. Unsworth. Market Trends: Evolving
HDD and SSD Storage Landscapes. Gartner Analyst Re-
port, 2013.

[16] PriceG2 Research Report. When Will SSD Have Same
Price as HDD. http://www.priceg2.com/.

[17] S. Ryza. Getting MapReduce 2 Up to Speed. Cloud-
era blog, 2014. http://blog.cloudera.com/blog/2014/
02/getting-mapreduce-2-up-to-speed/, .

[18] S. Ryza. Migrating to MapReduce 2 on
YARN (For Operators). Cloudera blog,
2013. http://blog.cloudera.com/blog/2013/11/
migrating-to-mapreduce-2-on-yarn-for-operators/, .

[19] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 1st edition, 2009. ISBN 0596521979,
9780596521974.

9

http://hadoop.apache.org
http://hadoop.apache.org
http://hbase.apache.org
http://hbase.apache.org
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://hadoopblog.blogspot.com/2012/05/hadoop-and-solid-state-drives.html
http://hadoopblog.blogspot.com/2012/05/hadoop-and-solid-state-drives.html
https://github.com/SWIMProjectUCB/SWIM/wiki
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.priceg2.com/
http://blog.cloudera.com/blog/2014/02/getting-mapreduce-2-up-to-speed/
http://blog.cloudera.com/blog/2014/02/getting-mapreduce-2-up-to-speed/
http://blog.cloudera.com/blog/2013/11/migrating-to-mapreduce-2-on-yarn-for-operators/
http://blog.cloudera.com/blog/2013/11/migrating-to-mapreduce-2-on-yarn-for-operators/

	Introduction
	Background and Related Work
	SSDs vs HDDs
	MapReduce -- Dataflow
	Prior work

	Experimental setup
	Hardware
	MapReduce jobs
	MapReduce configurations

	Results
	SSDs vs HDDs for a new cluster
	Adding SSDs to an existing cluster

	Implications and Conclusion

