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Abstract—MapReduce systems face enormous challenges due
to increasing growth, diversity, and consolidation of the data
and computation involved. Provisioning, configuring, and manag-
ing large-scale MapReduce clusters require realistic, workload-
specific performance insights that existing MapReduce bench-
marks are ill-equipped to supply.

In this paper, we build the case for going beyond bench-
marks for MapReduce performance evaluations. We analyze
and compare two production MapReduce traces to develop a
vocabulary for describing MapReduce workloads. We show that
existing benchmarks fail to capture rich workload characteristics
observed in traces, and propose a framework to synthesize and
execute representative workloads. We demonstrate that perfor-
mance evaluations using realistic workloads gives cluster operator
new ways to identify workload-specific resource bottlenecks, and
workload-specific choice of MapReduce task schedulers.

We expect that once available, workload suites would allow
cluster operators to accomplish previously challenging tasks
beyond what we can now imagine, thus serving as a useful tool
to help design and manage MapReduce systems.

I. INTRODUCTION

MapReduce is a popular paradigm for performing parallel
computations on large data. Initially developed by large In-
ternet enterprises, MapReduce has been adopted by diverse
organizations for business critical analysis, such as click
stream analysis, image processing, Monte-Carlo simulations,
and others [1]. Open-source platforms such as Hadoop have
accelerated MapReduce adoption.

While the computation paradigm is conceptually simple, the
logistics of provisioning and managing a MapReduce cluster
are complex. Overcoming the challenges involved requires un-
derstanding the intricacies of the anticipated workload. Better
knowledge about the workload enables better cluster provi-
sioning and management. For example, one must decide how
many and what types of machines to provision for the cluster.
This decision is the most difficult for a new deployment
that lacks any knowledge about workload-cluster interactions,
but needs to be revisited periodically as production work-
loads continue to evolve. Second, MapReduce configuration
parameters must be fine-tuned to the specific deployment,
and adjusted according to added or decommissioned resources
from the cluster, as well as added or deprecated jobs in the
workload. Third, one must implement an appropriate workload
management mechanism, which includes but is not limited to
job scheduling, admission control, and load throttling.

Workload can be defined by a variety of characteristics,
including computation semantics (e.g., source code), data

characteristics (e.g., computation input/output), and the real-
time job arrival patterns. Existing MapReduce benchmarks,
such as Gridmix [2], [3], Pigmix [4], and Hive Benchmark [5],
test MapReduce clusters with a small set of “representative”
computations, sized to stress the cluster with large datasets.
While we agree this is the correct initial strategy for evaluating
MapReduce performance, we believe recent technology trends
warrant an advance beyond benchmarks in our understanding
of workloads. We observe three such trends:
• Job diversity: MapReduce clusters handle an increasingly

diverse mix of computations and data types [1]. The
optimal workload management policy for one kind of
computation and data type may conflict with that for
another. No single set of “representative” jobs is actually
representative of the full range of MapReduce use cases.

• Cluster consolidation: The economies of scale in con-
structing large clusters makes it desirable to consolidate
many MapReduce workloads onto a single cluster [6],
[7]. Cluster provisioning and management mechanisms
must account for the non-linear superposition of different
workloads. The benchmark approach of high-intensity,
short duration measurements can no longer capture the
variations in workload superposition over time.

• Computation volume: The computations and data size han-
dled by MapReduce clusters increases exponentially [8],
[9] due to new use cases and the desire to perpetually
archive all data. This means that small misunderstanding
of workload characteristics can lead to large penalties.

Given these trends, it is no longer sufficient to use bench-
marks for cluster provisioning and management decisions. In
this paper, we build the case for doing MapReduce perfor-
mance evaluations using a collection of workloads, i.e., work-
load suites. To this effect, our contributions are as follows:
• Compare two production MapReduce traces to both high-

light the diversity of MapReduce use cases and develop a
way to describe MapReduce workloads.

• Examine several MapReduce benchmarks and identify
their shortcomings in light of the observed trace behavior.

• Describe a methodology to synthesize representative work-
loads by sampling MapReduce cluster traces, and then
execute the synthetic workloads with low performance
overhead using existing MapReduce infrastructure.

• Demonstrate that using workload suites gives cluster oper-
ators new capabilities by executing a particular workload
to identify workload-specific provisioning bottlenecks and



inform the choice of MapReduce schedulers.
We believe MapReduce cluster operators can use the workload
suites to accomplish a variety of previously challenging tasks,
beyond just the two new capabilities demonstrated here. For
example, operators can anticipate the workload growth in
different data or computational dimensions, provision the
added resources just in time, instead of over-provisioning
with wasteful extra capacity. Operators can also select highly-
specific configurations optimized for different kinds of jobs
within a workload, instead of having uniform configurations
optimized for a “common case” that may not exist. Operators
can also anticipate the impact of consolidating different work-
loads onto the same cluster. Using the workload description
vocabulary we introduce, operators can systematically quantify
the superposition of different workloads across many workload
characteristics. In short, once workload suites become avail-
able, we expect cluster operators to use them to accomplish
innovative tasks beyond what we can now imagine.

In the rest of the paper, we build the case for using workload
suites by looking at production traces (Section II) and examin-
ing why benchmarks cannot reproduce the observed behavior
(Section III). We detail our proposed workload synthesis and
execution framework (Section IV), demonstrate that it executes
representative workloads with low overhead, and gives cluster
operators new capabilities (Section V). Lastly, we discuss
opportunities and challenges for future work (Section VI).

A. MapReduce Overview

MapReduce is a straightforward divide and conquer algo-
rithm. The input data consists of key-value pairs. It is stored
on a distributed file system in mutually exclusive but jointly
exhaustive partitions. A map function is applied on the input
data to produce intermediate key-value pairs. The intermediate
data is then shuffled to appropriate nodes, where the reduce
function aggregates the intermediate data to generate the final
output key-value pairs. For more details about MapReduce,
we refer the reader to [10].

II. LESSONS FROM TWO PRODUCTION TRACES

There is a chronic shortage of production traces available
for MapReduce researchers. Without examining these traces,
it would be impossible to evaluate various proposed MapRe-
duce benchmarks. We have access to two production Hadoop
MapReduce traces, which we analyze and compare below.

One trace comes from a 600-machine cluster at Facebook
(FB trace), spans 6 months from May 2009 to October 2009,
and contains roughly 1 million jobs. The other trace comes
from a cluster of approximately 2000 machines at Yahoo! (YH
trace), covers three weeks in late February 2009 and early
March 2009, and contains around 30,000 jobs. Both traces
contain a list of job submission and completion times, data
sizes for the input, shuffle and output stages, and the running
time in task-seconds of map and reduce functions (e.g., 2
tasks running 10 seconds each will be 20 task-seconds). Thus,
these traces offer a rare opportunity to compare two large-scale
MapReduce deployments using the same trace format.
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Fig. 1. Data size at input/shuffle/output (top), and data ratio between
each stage (botttom).

We compare MapReduce data characteristics (Section II-A),
job submission and data movement rates (Section II-B), and
common jobs within each trace (Section II-C). The comparison
helps us develop a vocabulary to capture key properties of
MapReduce workloads (Section II-D).

A. Data Characteristics

MapReduce operates on key-value pairs at input, shuffle
(intermediate), and output stages. The size of data at each of
these stages provides a first-order indication of what data the
jobs run on. Figure 1 shows the aggregate data sizes and data
ratios at the input/shuffle/output stages, plotted as a cumulative
distribution function (CDF) of the jobs in each trace.

The input, shuffle, and output data sizes range from KBs
to TBs in both traces. Within the same trace, the data sizes
at different MapReduce stages follow different distributions.
Across the two traces, the same MapReduce stage also has
different distributions. Thus, the two MapReduce systems
were performing different computations on different data sets.
Additionally, many jobs in the FB trace have no shuffle stage -
the map outputs are directly written to the Hadoop Distributed
File System (HDFS). Consequently, the CDF of the shuffle
data sizes has a high density at 0.

The data ratios between the output/input, shuffle/input, and
output/shuffle stages also span several orders of magnitude.
Interestingly, there is little density around 1 for the FB trace,
indicating that most jobs are data expansions (ratio >> 1 for
all stages) or data compressions (ratio << 1 for all stages).
The YH trace shows more data transformations (ratio ≈ 1).

B. Job Submission and Data Intensity Over Time

Job submission patterns and data intensities indicate how
much work there is. The YH trace is too short to capture the
long-term evolution in job submission and data intensity. Thus,
we focus on the FB trace for this analysis.

Figure 2 shows weekly aggregates of job counts and the sum
of input, shuffle, and output data sizes over the entire trace.
There is no long term growth trend in the number of jobs or
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Fig. 2. Weekly aggregate of job counts (top) and sum of map and
reduce data size (below). FB trace.
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Fig. 3. Hourly job submission rate (top) and sum of input, shuffle,
output data sizes (below) over a randomly selected week. FB trace.

the sum of data size. Also, there is high variation in the sum
data size but not in the number of jobs, indicating significant
changes in the data processed. We also see a sharp drop in the
number of jobs in Week 11, which our Facebook collaborators
clarified was due to a change in cluster operations.

Figure 3 shows hourly aggregates of job counts and sum
data sizes over a randomly selected week. We do not aggregate
at scales below an hour as many jobs take tens of minutes
to complete. There is high variation in both the number of
jobs and the sum data size. The number of jobs also show
weak diurnal patterns, peaking at mid-day and dropping at
mid-night. To detect the existence of any cycles, we performed
Fourier analysis on the hourly job counts over the entire trace.
There are visible but weak cycles at the 12 hour, daily, and
weekly frequencies, mixed in with a high amount of noise.

C. Common Jobs Within Each Trace

In this section, we investigate whether we can capture what
the computation is using a small set of “common jobs”. We
use k-means, a well-known data clustering algorithm [11], to
extract such information. We describe each job with many
features (dimensions), and input the array of all jobs into k-
means. K-means finds the natural clusters of data points, i.e.,
jobs. We consider jobs in the same cluster as belonging to a
single equivalence class, i.e., a single common job.

We describe each job using all 6 features available from
the cluster traces - the job’s input, shuffle, output data sizes in
bytes, its running time in seconds, and its map and reduce time
in task-seconds. We linearly normalize all data dimensions to
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Fig. 4. Cluster quality - % variance explained vs. the number of
clusters. The marker indicates the number of clusters used for more
detailed analysis.

a range between 0 and 1 to account for the different measure-
ment units in each feature. We increment k, the number of
clusters, until there is diminishing improvement in the cluster
quality. We measure cluster quality by variance explained, a
standard metric computed by the difference between the total
variance in all data points and the residual variance between
the data points and their assigned cluster centers.

Figure 4 shows the % variance explained as k increases.
Even at small k, we start seeing diminishing improvements.
Having too many clusters will lead to an unwieldy number
of common jobs, even though the variance explained will be
higher. We believe a good place to stop is k = 10 for the FB
trace, and k = 8 for the YH trace, indicated by the markers
in Figure 4. At these points, the clustering structure explains
70% (FB) and 80% (YH) of the total variance, suggesting that
a small set of common jobs can indeed cover a large range of
per-job behavior in the trace data.

We can identify the characteristics of these common jobs by
looking at the numerical values of the cluster centers. Table
I shows the cluster size and our manually applied labels.
We derive the labels from looking at the data ratios and
durations at various stages, e.g., “aggregate, fast” jobs have
shuffle/input and output/shuffle ratios both <<1, and relatively
small duration compare with the other jobs.

Both traces have a large cluster of small jobs, and several
small clusters of various large jobs. Small jobs dominate the
total number of jobs, while large jobs dominate all other
dimensions. Thus, for performance metrics that place equal
weights on all jobs, the small jobs should be an optimization
priority. However, large jobs should be the priority for perfor-
mance metrics that weigh each job according to its size either
in data, running time, or map and reduce task time.

Also, the FB and YH traces contain different job types. the
FB trace contains many data loading jobs, characterized by
large output data size >> input data size, with minimal shuffle
data. The YH trace does not contain this job type. Both traces
contain some mixture of jobs performing data aggregation
(input > output), expansion (input < output), transformation
(input ≈ output), and summary (input >> output), with each
job type in varying proportions.

D. To Describe a Workload

Our comparison shows that the two traces capture different
MapReduce use cases. Thus, we need a good way to describe
each workload and compare it against other workloads.

We believe a good description should focus on the semantics
at the MapReduce abstraction level. This includes the data



TABLE I
CLUSTER SIZES, MEDIANS, AND LABELS FOR FB (TOP) AND YH (BELOW). MAP TIME AND REDUCE TIME ARE IN TASK-SECONDS, E.G., 2 TASKS OF 10

SECONDS EACH IS 20 TASK-SECONDS.

# Jobs Input Shuffle Output Duration Map time Reduce time Label
Facebook trace
1081918 21 KB 0 871 KB 32 s 20 0 Small jobs

37038 381 KB 0 1.9 GB 21 min 6,079 0 Load data, fast
2070 10 KB 0 4.2 GB 1 hr 50 min 26,321 0 Load data, slow
602 405 KB 0 447 GB 1 hr 10 min 66,657 0 Load data, large
180 446 KB 0 1.1 TB 5 hrs 5 min 125,662 0 Load data, huge

6035 230 GB 8.8 GB 491 MB 15 min 104,338 66,760 Aggregate, fast
379 1.9 TB 502 MB 2.6 GB 30 min 348,942 76,736 Aggregate and expand
159 418 GB 2.5 TB 45 GB 1 hr 25 min 1,076,089 974,395 Expand and aggregate
793 255 GB 788 GB 1.6 GB 35 min 384,562 338,050 Data transform

19 7.6 TB 51 GB 104 KB 55 min 4,843,452 853,911 Data summary
Yahoo trace

21981 174 MB 73 MB 6 MB 1 min 412 740 Small jobs
838 568 GB 76 GB 3.9 GB 35 min 270376 589385 Aggregate, fast

91 206 GB 1.5 TB 133 MB 40 min 983998 1425941 Expand and aggregate
7 806 GB 235 GB 10 TB 2 hrs 35 min 257567 979181 Transform and expand

35 4.9 TB 78 GB 775 MB 3 hrs 45 min 4481926 1663358 Data summary
5 31 TB 937 GB 475 MB 8 hrs 35 min 33606055 31884004 Data summary, large

1303 36 GB 15 GB 4.0 GB 1 hr 15021 13614 Data transform
2 5.5 TB 10 TB 2.5 TB 4 hrs 40 min 7729409 8305880 Data transform, large

on which the jobs run, the number of jobs there are in
the workload and their arrival patterns, and the computation
performed by the jobs. A workload description at this level
will persist despite any changes in the underlying physical
hardware (e.g., CPU/memory/network), or any overlaid func-
tionality extensions (e.g., Hive or Pig).

Data on which the jobs run:
The data size and data ratios at the input/shuffle/output

stages provide a first-order description of the data. We need
to describe both the statistical distribution of data sizes, and
the per-job data ratios at each stage. Statistical techniques like
k-means can extract the dependencies between various data
dimensions. Also, the data format should be captured. Even
though our traces contain no such information, data formats
help us separate workloads that have the same data sizes and
ratios, but different data content.

Number of jobs and their arrival patterns:
The list of job submissions and submission times provide a

very specific description. Given that we cannot list submission
times for all jobs, we should describe submission patterns
using averages, peak-to-average ratios, diurnal patterns, etc.

Computation performed by the jobs:
The actual code for map and reduce tasks represents the

most accurate description of the computation done. However,
the code is often unavailable due to logistical and confi-
dentiality reasons. We believe that a good alternative is to
identify classes of common jobs in the workload, using data
characteristics, job durations, and task run times, as in our
k-means analysis. When the code is available, it would be
helpful to add some semantic description, such as text parsing,
reversing indices, image processing, anomaly detection, and
others. We expect this information would be available within
organizations directly managing the MapReduce clusters.

The above facilitates a qualitative description. We introduce
a quantitative description in Section IV when we describe how

TABLE II
SUMMARY OF SHORTCOMINGS OF RECENT MAPREDUCE BENCHMARKS,

COMPARED AGAINST WORKLOAD SUITES (RIGHT-MOST COLUMN).

Grid- Hive Hi Pig Grid- WL
mix2 BM bench Mix mix3 suites

Diverse job types
√ √ √ √

Right # of jobs
for each job type

√ √

Variations in job
submit intensity

√ √

Representative
data-sizes

√ √

Easy to generate
scaled/anticipated
workloads

√

Easy to generate
consolidated
workloads

√

Cluster & config.
independent

√ √ √ √ √

to synthesize a representative workload.

III. SHORTCOMINGS OF MAPREDUCE BENCHMARKS

In this section, we discuss why existing benchmarks are
insufficient for evaluating MapReduce performance. Our thesis
is that existing benchmarks are not representative. They cap-
ture narrow slivers of a rich space of workload characteristics.
What is needed is a framework for constructing workloads that
allows us to select and combine various characteristics.

Table II summarizes the strengths and weaknesses of
five contemporary MapReduce benchmarks – Gridmix2, Hive
Benchmark, Pigmix, Hibench and Gridmix3. Below, we dis-
cuss each in detail. None of the existing benchmarks provide
as much flexibility and functionality as workload suites.

Gridmix2 [2] includes stripped-down versions of “common”
jobs – sorting text data and SequenceFiles, sampling from
large compressed datasets, and chains of MapReduce jobs ex-
ercising the combiner. Gridmix 2 is primarily a saturation tool
[3], which emphasizes stressing the framework at scale. As a
result, jobs produced from Gridmix tend towards the jobs with



100s of GBs of input, shuffle, and output data. While stress
evaluations are an important aspect of evaluating MapReduce
performance, the production workloads in Section II contain
many jobs with KB to MB data sizes. Also, as we show later in
Section V-C, running a representative workload places realistic
stress on the system beyond that generated by Gridmix 2.

Hive Benchmark [5] tests the performance of Hive, a data
warehousing infrastructure built on top of Hadoop MapRe-
duce. It uses datasets and queries derived from those used
in [12]. These queries aim to describe “more complex” an-
alytical workloads and focus on direct comparison against
parallel databases. It is not clear that the queries in the Hive
Benchmark reflect actual queries performed in production
Hive deployments. Even if the five queries are representative,
running Hive Benchmark does not capture different query
mixes, interleavings, arrival intensities, data sizes, and other
complexities that one would expect in a production deploy-
ment of Hive.

HiBench [13] consists of a suite of eight Hadoop pro-
grams that include synthetic microbenchmarks and real-world
applications – Sort, WordCount, TeraSort, NutchIndexing,
PageRank, Bayesian Classification, K-means Clustering, and
EnhancedDFSIO. These programs are presented as represent-
ing a wider diversity of applications than those used in prior
MapReduce benchmarking efforts. While HiBench includes
a wider variety of jobs, it still fails to capture different job
mixes and job arrival rates that one would expect in production
MapReduce clusters.

PigMix [4] is a set of twelve queries intended to test the
latency and the scalability limits of Pig – a platform for
analyzing large datasets that includes a high-level language
for constructing analysis programs and the infrastructure for
evaluating them. While this collection of queries may be
representative of the types of queries run in Pig deployments,
there is no information on representative data sizes, query
mixes, query arrival rate etc. to capture the workload behavior
seen in production environments.

Gridmix3 [14], [3] was driven by situations where improve-
ments measured to have dramatic gains on Gridmix2 showed
ambiguous or even negative effects in production [14]. Grid-
mix3 replays job traces collected via Rumen [15], reproducing
the byte and record movement patterns, as well as the job
submission sequences, thus producing comparable load on the
I/O subsystems.

Although the direct replay approach reproduces inter-arrival
rates and the correct mix of job types and data sizes, it
introduces other problems. For example, it is challenging to
change the workload to add or remove new types of jobs, or
to scale the workload along dimensions such as data sizes or
arrival intensities. Further, changing the input Rumen traces
is difficult, limiting the benchmark’s usefulness on clusters
with configurations different from the cluster that initially
generated the trace. For example, the number of tasks-per-
job is preserved from the traces. Thus, evaluating the appro-
priate configuration of task size and task number is difficult.
Misconfigurations of the original cluster would be replicated.

Similarly, it is challenging to use Gridmix3 to explore the
performance impact of combining or separating workloads,
e.g., through consolidating the workload from many clusters,
or separating a combined workload into specialized clusters.

IV. WORKLOAD SYNTHESIS AND EXECUTION

We would like to synthesize a representative workload for
a particular use case and execute it to evaluate MapReduce
performance for a specific configuration. For MapReduce clus-
ter operators, this approach offers more relevant insights than
those gathered from one-size-fits-all benchmarks. We describe
here a mechanism to synthesize representative workloads from
MapReduce traces (Section IV-B), and a mechanism to execute
the synthetic workload on a target system (Section IV-C).

A. Design Goals

We identify two design goals:
1. The workload synthesis and execution framework should

be agnostic to hardware/software/configuration choices, clus-
ter size, specific MapReduce implementation, and the underly-
ing file system. We may intentionally vary any of these factors
to quantify the performance impact of hardware choices,
software (e.g., task scheduler) optimizations, configuration
differences, cluster capacity increases, MapReduce implemen-
tation choices (open source vs. proprietary), or file system
choices (distributed vs. local vs. in-memory).

2. The framework should synthesize representative work-
loads that execute in a short duration. Such workloads lead
to rapid performance evaluations, i.e., rapid design loops. It
is challenging to achieve both representativeness and short
duration. For example, a trace spanning several months forms
a workload that is representative by definition, but practically
impossible to replay in full.

B. Workload Synthesis

The workload synthesizer takes as input a MapReduce trace
over a time period of length L, and the desired synthetic
workload duration W , with W < L. The MapReduce trace is
a list of jobs, with each item containing the job submit time,
input data size, shuffle/input data ratio, and output/shuffle data
ratio. Traces with this information allow us to synthesize a
workload with representative job submission rate and patterns,
as well as data size and ratio characteristics. The data ratios
also serve as an approximation to the actual computation being
done. The approximation is a good one for a large class of IO-
bound MapReduce computations.

The workload synthesizer divides the synthetic workload
into N non-overlapping segments, each of length W/N . Each
segment will be filled with a randomly sampled segment of
length W/N , taken from the input trace. Each sample contains
a list of jobs, and for each job the submit time, input data
size, shuffle/input data ratio, and output/shuffle data ratio. We
concatenate N such samples to obtain a synthetic workload
of length W . The synthetic workload essentially samples the
trace for a number of time segments. If W << L, the samples
have low probability of overlapping.



The workload synthesis returns a list of jobs in the same
format as the initial trace, with each item containing the
job submit time, input data size, shuffle/input data ratio, and
output/shuffle data ratio. The primary difference is that the
synthetic workload is of duration W < L.

We satisfy design Requirement 1 by the choice of what data
to include in the input trace – the data included contains no
cluster-specific information. In Section V, we demonstrate that
Requirement 2 is also satisfied. Intuitively, when we increase
W , we get more samples, hence a more representative work-
load. When we increase W/N , we capture more representative
job submission sequences, but at the cost of fewer samples
within a given W . Adjusting W and N allows us to tradeoff
representativeness in one characteristic versus another.

C. Workload Execution

The workload executor translates the job list from the
synthetic workload to concrete MapReduce jobs that can be
executed on artificially generated data. The workload executor
runs a shell script that writes the input test data to the
underlying file system (HDFS in our case), launches jobs
with specified data sizes and data ratios, and sleeps between
successive jobs to account for gaps between job submissions:
HDFS randomwrite(max_input_size)

sleep interval[0]
RatioMapReduce inputFiles[0] output0 \
shuffleInputRatio[0] outputShuffleRatio[0]

HDFS -rmr output0 &

sleep interval[1]
RatioMapReduce inputFiles[1] output1 \
shuffleInputRatio[1] outputShuffleRatio[1]

HDFS -rmr output1 &

...

Populate the file system with test data:
We write the input data to HDFS using the RandomWriter

example included with recent Hadoop distributions. This job
creates a directory of fixed size files, each corresponding to
the output of a RandomWriter reduce task. We populate the
input data only once, writing the maximum per-job input data
size for our workload. Jobs in the synthetic workload take as
their input a random sample of these files, determined by the
input data size of each job. The input data size has the same
granularity as the file sizes, which we set to be 64MB, the
same as default HDFS block size. We believe this setting is
reasonable because our input files would be as granular as
the underlying HDFS. We validated that there is negligible
overhead when concurrent jobs read from the same HDFS
input (Section V).
MapReduce job to preserve data ratios:

We wrote a MapReduce job that reproduces job-specific
shuffle-input and output-shuffle data ratios. This RatioMapRe-
duce job uses a straightforward probabilistic identity filter to
enforce data ratios. We show only the map function below.
The reduce function uses an identical algorithm.
class RatioMapReduce {

x = shuffleInputRatio

map(K1 key, V1 value, <K2, V2> shuffle) {
repeat floor(x) times
shuffle.collect(new K2(randomKey), new V2(randomVal));

if (randomFloat(0,1) < decimal(x))
shuffle.collect(new K2(randomKey), new V2(randomVal));

}

reduce(K2 key, <V2> values, <K3, V3> output) {
...

}

} // end class RatioMapReduce

Removing HDFS output from synthetic workload:
We need to remove the data generated by the synthetic

workload. Otherwise, the synthetic workload outputs accumu-
late, quickly reaching the storage capacity on a cluster. We
used a straightforward HDFS remove command, issued to run
as a background process by the main shell script running the
workload. We also experimentally ensured that this mechanism
imposes no performance overhead (Section V).

V. EVALUATION

We believe an evaluation of a MapReduce workload suite
should demonstrate three things – that the synthesized work-
load is actually representative (Section V-A), that the workload
execution framework has low overhead (Section V-B), and that
executing the synthesized workloads gives cluster operators
new capabilities otherwise unavailable (Sections V-C, V-D).
We demonstrate all three by synthesizing a day-long work-
load using the Facebook traces and executing it to iden-
tify workload-specific system size bottlenecks and to inform
workload-specific choice of MapReduce task schedulers.

A. Representativeness of the Synthetic Workload

By representative, we mean that the synthetic workload
should reproduce from the original trace the distribution of
input, shuffle, and output data sizes (representative data char-
acteristics), the mix of job submission rates and sequences,
and the mix of common job types. We demonstrate all three
by synthesizing day-long “sFacebook-like” workloads using
the Facebook trace and our workload synthesis tools.

Data characteristics
Figure 5 shows the distributions of input, shuffle, and output

data sizes of the synthetic workload, compared with that in the
original Facebook trace. To observe the statistical properties
of the trace sampling method, we synthesized 10 day-long
workloads using 1-hour continuous samples . We see that
sampling does introduce a degree of statistical variation, but
bounded around the aggregate statistical distributions of the
entire trace. In other words, our workload synthesis method
gives representative data characteristics.

We also repeated our analysis for different sample window
lengths. The results (Figure 6) are intuitive - when the syn-
thetic workload length is fixed, shorter sample lengths result
in more samples and more representative distributions. In
fact, according to statistics theory, the CDFs for the synthetic
workloads converge towards the “true” CDF, with the bounds
narrowing at O(n−0.5), where n is the number of samples [16].
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Fig. 5. Distributions of data sizes in synthesized workload using 1-
hr samples. Showing that the data characteristics are representative –
min. and max. distributions for the synthetic workload (dashed lines)
bound the distribution computed over the entire trace (solid line).

0

0.2

0.4

0.6

0.8

1

1E+0 1E+3 1E+6 1E+91E+12

CDF

Output size – 4hr samples

0

0.2

0.4

0.6

0.8

1

1E+0 1E+3 1E+6 1E+91E+12

CDF

Output size – 1hr samples

0

0.2

0.4

0.6

0.8

1

1E+0 1E+3 1E+6 1E+91E+12

CDF

Output size – 15min samples

0      KB     MB     GB     TB 0      KB     MB     GB     TB 0      KB     MB     GB     TB

Fig. 6. Distributions of output sizes in synthesized workload using
different sample lengths. For fixed-length synthetic workload, the hor-
izontal gap between the min. and max. distributions for the synthetic
workload (dashed lines) and the distribution for the entire trace (solid
line) decreases by 2× when the sampling window shortens by 4×.

Thus, shorter sample lengths correspond to synthetic work-
loads with more representative data characteristics.

Also, the sampling method could be modified to accommo-
date different metrics of “representativeness”. For example, to
capture daily diurnal patterns, the sampling method could use
day-long continuous sample windows. Alternately, we could
perform conditional sampling of hour-long windows, e.g., the
first hour in synthetic trace samples from the midnight-1am
time window of all days. Other conditional sampling methods
can capture behavior changes over different time periods, job
streams from different organizations, and the like.

Job submission patterns
Our intuition is that job submission-rate per time unit is

faithfully reproduced only if the length of each sample is
longer than the time unit involved. Otherwise, we would be
performing memoryless sampling, with the job submission rate
fluctuating in a narrow range around the long term average,
thus failing to reproduce workload spikes in the original trace.
If the job sample window is longer than the time unit, then
more samples would lead to a more representative mix of
behavior, as we discussed previously.

Figure 7 confirms this intuition. The figure shows the jobs
submitted per hour for workloads synthesized by various
sample windows lengths. We see that the workload synthesized
using 4-hour samples has loose bounds around the overall
distribution, while the workload synthesized using 1-hour
samples has closer bounds. However, the workload synthe-
sized using 15-minute samples does not bound the overall
distribution. In fact, the 15-minute sample synthetic workload
has a narrow distribution around 300 jobs per hour, which
is the long-term average job submission rate. Thus, while
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Fig. 7. Distributions of jobs per hour in synthetic workload. Short
samples distort variations in job submit rates – min. and max. distri-
butions for synthetic workload (dashed lines) bound the distribution
for the entire trace (solid line) for 1 & 4-hour samples only.

0.0

0.5

1.0

1.5

2.0

fr
a

c
ti
o

n
 o

f 
o

v
e

ra
ll 

fr
e

q
u

e
n

c
y

15min

1hr

4hrs

Fig. 8. Frequency of common jobs in the synthetic workload
as fractions of the frequencies in the original trace. Showing that
workloads synthesized using continuous samples of 15min, 1hr, and
4hrs all have common jobs frequencies similar to the original trace.

shorter sample windows result in more representative data
characteristics, they distort variations in job submission rates.

Common jobs
Figure 8 shows the frequency of common jobs in the

synthetic workload, expressed as fractions of the frequencies
in the original trace. A representative workload would have
the same frequencies of common jobs as the original trace,
i.e., fractions of 1. To limit statistical variation, we compute
average frequencies from 10 instances of a day-long workload.

We see that regardless of the sample window length, the
frequencies are mostly around 1. A few job types have
fractions deviating considerably from 1. Table I indicates that
those jobs have very low frequencies. Thus, the deviations are
statistical artifacts – the presence or absence of even one of
those jobs can significantly affect the frequency.

Interestingly, the sample window length has no impact
on how much the frequencies deviate. This differs from the
data characteristics and submission patterns, where the sample
window length has a clear impact on the representativeness of
the synthetic workload. Here, we can still increase workload
representativeness by synthesizing longer workloads.

B. Low Workload Execution Overhead

There are two sources of potential overhead in our workload
execution framework. First, concurrent reads by many jobs
on the same input files could potentially affect HDFS read
performance. Second, the background task to remove workload
output could affect both HDFS read and write performance.



TABLE III
SIMULTANEOUS HDFS READ,

SHOWING LOW OVERHEAD.

Job 1 597 s ± 56 s
Job 2 588 s ± 46 s
Job 3 603 s ± 56 s
Job 4 614 s ± 50 s

TABLE IV
BACKGROUND HDFS REMOVE,

ALSO SHOWING LOW OVERHEAD.

Job 1 206 s ± 14 s
Job 2 106 s ± 10 s
Job 3 236 s ± 8 s
Job 4 447 s ± 18 s
Job 5 206 s ± 11 s
Job 6 102 s ± 8 s
Job 7 218 s ± 16 s
Job 8 417 s ± 9 s

Ideally, we would quantify the overhead by running the
Facebook-like workload with non-overlapping input data or
no removal of workload output, and compare the performance
against a setup in which we do have overlapping input and
background removal of output. Doing so requires a system
with up to 200TB of disk space (sum of per-day input, shuffle,
output size, multiplied by 3-fold HDFS replication). Thus, we
evaluate the overhead using simplified experiments.

Concurrent reads
To verify that concurrent reads of the same input files have

low impact on HDFS reads, we repeat 10 times the following
experiment on a 10-machine cluster running Hadoop 0.18.2.
Job 1: 10 GB sort, input HDFS/directoryA
Job 2: 10 GB sort, input HDFS/directoryB
Wait for both to finish
Job 3: 10 GB sort, input HDFS/directoryA
Job 4: 10 GB sort, input HDFS/directoryA

Jobs 1 and 2 give the baseline performance, while Jobs
3 and 4 identify any potential overhead. The running times
are in Table III. The finishing times are completely within
the confidence intervals of each other. Thus, our data input
mechanism imposes no measurable overhead.

We repeat the experiment with more concurrent read jobs.
There, the MapReduce task schedulers and placement algo-
rithms introduce large variance in job completion time, with
the performance difference again falling within confidence
intervals of each other. Thus, our data input mechanism has no
measurable overhead at even higher read concurrency levels.

Background deletes
To verify that the background task to remove workload

output has low impact on HDFS read and write performance,
we repeat 10 times the following experiment on a 10-machine
cluster running Hadoop 0.18.2.
Job 1: Write 10 GB to HDFS; Wait for job to finish
Job 2: Read 10 GB from HDFS; Wait for job to finish
Job 3: Shuffle 10 GB; Wait for job to finish
Job 4: Sort 10 GB; Wait for job to finish

Job 5: Write 10 GB to HDFS, with HDFS -rmr in background
Wait for job to finish

Job 6: Read 10 GB from HDFS, with HDFS -rmr in background
Wait for job to finish

Job 7: Shuffle 10 GB, with HDFS -rmr in background
Wait for job to finish

Job 8: Sort 10 GB, with HDFS -rmr in background
Wait for job to finish

Jobs 1-4 provide the baseline for write, read, shuffle and
sort. Jobs 5-8 quantify the performance impact of background
deletes. The running times are in Table IV. The finishing times
are completely within the confidence intervals of each other.

Again, our data removal mechanism imposes no measurable
overhead. This is because recent HDFS versions implement
delete by renaming the deleted file to a file in the /trash

directory, with the space being truly reclaimed only after 6
hours [17]. Thus, even an in-thread, non-background HDFS
remove would impose low overhead.

C. New Capability 1 - Identify Workload-Specific Bottlenecks

We run the day-long Facebook-like workload at scale
on a 200-machine cluster on Amazon Elastic Computing
Cloud (EC2) [18], running Hadoop 0.18.2 with default con-
figurations. Each machine is a m1.large machine instance
with 7.5GB memory, 4×1.0-1.2GHz equivalent CPU capacity,
400GB storage capacity, and “high” IO performance.

When we run the workload, many of the jobs failed to
complete. We suspected that there is a system sizing issue
because we run on a 200-machine cluster a workload that orig-
inally came from a 600-machine cluster. Thus, we decreased
by a factor of 3 the size of input/shuffle/output for all jobs.
Even then, 8.4% of the jobs still failed, with the failed jobs
appearing in groups of similar submission times, but with the
groups dispersed throughout the workload. It turns out that a
subtle system sizing issue is the bottleneck.

What happens is that when there is a mix of large and small
jobs, and the large jobs have reduce tasks that take a long time
to complete, the small jobs complete their map tasks, with
the reduce tasks remaining on queue. When this happens, the
map tasks keep completing, allowing newly submitted jobs
to begin. We get an increasingly long queue of jobs that
completed the map phase but wait for the reduce phase. The
cluster is compelled to store the shuffle data of all these active
jobs, since the reduce step requires the shuffle data. It is this
increasing set of active shuffle data that makes the system run
out of storage space. Once that happens, jobs that attempt to
write shuffle data or output data will fail.

MapReduce recovers gracefully from this failure. Once a
job fails, MapReduce reclaims the space for intermediate data.
Thus, when enough jobs have failed, there would be enough
reclaimed disk space for MapReduce to resume executing the
workload as usual, until the failure repeats. Hence the failures
appear throughout the workload.

The ability to identify this bottleneck represents a new
capability because the failure occurs only when the workload
contains a specific sequence of large and small jobs, and
specific ratios of map versus reduce times. A benchmark
cannot identify this bottleneck because it does not capture the
right job submission sequences. A direct trace replay does,
but potentially takes longer. For example, if the pathological
job submission sequence happens frequently, but only in the
second half of the trace, then we need to replay the entire first
half of the trace before identifying the bottleneck.

Increasing the disk size would address this failure mode, for
example having a cluster with 200TB of storage (sum of input,
shuffle, output sizes, multiplied by 3-fold HDFS replication).
However, this would be a wasteful over-provision. The real
culprit is the FIFO task scheduler, which creates a long queue



of jobs that are starved of reduce slots. The Hadoop fair
scheduler was designed specifically to address this issue [19].
Thus, we are not surprised that the fair schedule came out of
a direct collaboration with Facebook.

As a natural follow-up, we investigate how much the fair
scheduler actually benefits this workload.

D. New Capability 2 - Select Workload-Specific Schedulers

Briefly, MapReduce task schedulers work as follows. Each
job breaks down into many map and reduce tasks, with each
task operating on a partition of the data. These tasks execute
in parallel on different machines. Each machine has a fixed
number of task slots, by default 2 map and 2 reduce slots. The
task scheduler receives job submission requests and assigns
tasks to worker machines. The FIFO scheduler assigns task
slots to jobs in FIFO order, while the fair scheduler gives each
job a concurrent fair share of the task slots. A big performance
difference occurs when the job stream contains many small
jobs following a large job. Under the FIFO scheduler, the large
job takes up all the task slots, with the small jobs enqueued
until the large job completes. Under the fair scheduler, the jobs
share the task slots equally, with the large jobs taking longer,
but small jobs being able to run immediately.

We run the day-long Facebook-like workload on the cluster
of 200 m1.large EC2 instances. We compare the behavior
when the cluster runs Hadoop 0.18.2, which has the FIFO
scheduler, with Hadoop 0.20.2, which has the fair scheduler.
We observed three illustrative kinds of behavior. We analyze
each, and then combine the observations to discuss why the
choice of schedulers should depend on the workload.

Disk “bottleneck”
Figure 9 captures a snapshot of 100 consecutive jobs in our

day-long workload of roughly 6000 jobs. The horizontal axis
indicates the job indices in submission order, i.e., the first job
in the workload has index 0. There are several bursts of large
jobs that cause many jobs to fail for the FIFO scheduler. These
failed jobs have no completion time, leaving a missing marker
in the graph. We know there are bursts of large jobs because
the jobs take longer to complete under the fair scheduler. We
see two such bursts - Jobs 4570-4580, 4610-4650. This is the
failure mode we discussed in Section V-C. The fair scheduler
is clearly superior, due to the higher job completion rate.

Small jobs after large jobs, no failures
This is the precise job arrival sequence for which the

fair scheduler was designed. Figure 10 captures another 100
consecutive jobs in the day-long workload. Here, when both
the FIFO and fair schedulers exhibit no job failures, the fair
scheduler is still far superior. Several very large jobs arrive
in succession (high completion times around Job 4820 and
just beyond Job 4845). Each arrival brings a large jump in
the FIFO scheduler completion time of subsequent jobs. This
is again due to FIFO head-of-queue blocking. Once the large
job completes, all subsequent small jobs complete in rapid
succession, leading to the horizontal row of markers. The
fair scheduler, in contrast, shows small jobs with unaffected
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Fig. 9. A snapshot of 100 jobs in a day-long Facebook-like workload,
showing job failures in FIFO scheduler (missing markers, i.e., jobs
without a completion time).
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Fig. 10. Job submit pattern of small jobs after large jobs from a
snapshot of 100 jobs in a day-long Facebook-like workload. The fair
scheduler gives lower completion times and is also superior.
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Fig. 11. Long sequence of small jobs from a snapshot of 100 jobs in
a day-long Facebook-like workload. The FIFO scheduler gives lower
completion times and is superior.

running times, sometimes orders of magnitude faster than their
FIFO counterpart. Such improvements agree with the best-case
improvement reported in the original fair scheduler study [19],
but far higher than the average improvement reported there.

Long sequence of small jobs

Figure 11 captures 100 consecutive jobs that are all small
jobs with fast running times. For this job submission pattern,
Hadoop 0.20.2 is slower than Hadoop 0.18.2, unsurprising
given the many added features since 0.18.2. The fair sched-
uler brings little benefit. Small jobs dominate this workload
(Table I). The vast improvements for small jobs after large
jobs would be amortized across performance penalties for long
sequences of small jobs.

Workload-specific choice of schedulers

Our experiments show that the choice of schedulers depends
on both the performance metric and the workload. The fair
scheduler would be a clear winner if the metric is the worst-
case job running time or the variance in job running time.
However, if average job running time is the metric, then the
FIFO scheduler would be preferred if long sequences of small
jobs dominate the workload. Thus, even though cluster users
benefit from the fairness guarantees of the fair scheduler,
cluster operators may find that fairness guarantees are rarely
needed, and adopt the FIFO scheduler instead.



The ability to make workload-specific choice of schedulers
represents a new capability because scheduler performance
depends on the frequencies of various job submission patterns.
The right choice of scheduler for one workload would not
imply the right choice for another. The original fair scheduler
study [19] used a synthetic workload with frequent interleaving
of large and small jobs, leading to the conclusion that the
fair scheduler should be unequivocally preferred. Here, we
execute a workload with a more representative interleaving
between large and small jobs. This leads us to a more nuanced,
workload-specific choice of MapReduce task schedulers.

VI. TOWARDS MAPREDUCE WORKLOAD SUITES

We must go beyond using one-size-fits-all benchmarks for
MapReduce performance evaluations. Our comparison of two
production traces shows great differences between MapReduce
use cases. No single benchmark can capture such diverse
behavior. We advocate for performance evaluations using rep-
resentative workloads and presented a framework to generate
and execute such workloads. We demonstrated that running
realistic workloads gives cluster operators new ways to identify
system bottlenecks and evaluate system configurations.

We believe that having representative workloads can assist
many recent MapReduce studies. For example, studies on
how to predict MapReduce job running times [20], [21] can
evaluate their mechanisms on realistic job mixes. Studies
on MapReduce energy efficiency [22], [23] can quantify
energy savings under realistic workload fluctuations. Various
efforts to develop effective MapReduce workload management
schemes [24], [7] can generalize their findings across a dif-
ferent realistic workloads. In short, having realistic workloads
allow MapReduce researchers better understand the strengths
and limitations of the proposed optimizations.

Our work complements efforts to develop MapReduce sim-
ulators [25], [26]. Having realistic workloads allows cluster
operators to run simulations with realistic inputs, amplifying
the benefit of MapReduce simulators. Our approach differs
from that taken by benchmarks that focus on IO byte stream
properties [27]. We focus on MapReduce-level semantics, such
as input/shuffle/output data sizes, because doing so would
produce more immediate MapReduce design insights.

Many open problems remain for future work. One sim-
plification we made is that it is sufficient to replicate only
the data characteristics when we execute the workload. This
simplification is acceptable here because we know through
direct conversations that the Facebook production cluster runs
many Extract-Transform-Load (ETL) jobs, whose behavior is
dominated by data movements. Future work should go beyond
this simplification. Ideally, we would construct common jobs
with more complete semantics than just the data ratios.

Looking forward, we expect that we would eventually
understand the full taxonomy of MapReduce use cases. At
that point, we can move beyond the highly-targeted, one-per-
use-case workload suites that we proposed here. The next step
in performance evaluations would move towards standardized
workload suites, which serves as a richer kind of “benchmark”.

The first step towards that goal is to understand more
MapReduce workloads. To that end, we invite all MapReduce
cluster operators to publish their production workloads. We
hope our workload description vocabulary can provide an ini-
tial format for releasing traces. We also hope that our workload
synthesis tools can assure MapReduce operators that they
can release representative workloads without compromising
confidential information about their production clusters.
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