
Statistics-Driven Workload Modeling for the Cloud
Archana Ganapathi, Yanpei Chen, Armando Fox, Randy Katz, David Patterson

Computer Science Division, University of California at Berkeley
{archanag, ychen2, fox, randy, pattrsn}@cs.berkeley.edu

Abstract— A recent trend for data-intensive computations is
to use pay-as-you-go execution environments that scale trans-
parently to the user. However, providers of such environments
must tackle the challenge of configuring their system to provide
maximal performance while minimizing the cost of resources
used. In this paper, we use statistical models to predict re-
source requirements for Cloud computing applications. Such a
prediction framework can guide system design and deployment
decisions such as scale, scheduling, and capacity. In addition, we
present initial design of a workload generator that can be used
to evaluate alternative configurations without the overhead of
reproducing a real workload. This paper focuses on statistical
modeling and its application to data-intensive workloads.

I. INTRODUCTION

The computing industry has recently uncovered the potential
of large-scale data-intensive computing. Internet companies
such as Google, Yahoo!, Amazon, and others rely on the ability
to process large quantities of data to drive their core business.
Traditional decision support databases no longer suffice be-
cause they do not provide adequate scaling of compute and
storage resources. To satisfy their data-processing needs, many
Internet services turn to frameworks like MapReduce [1],
a big-data computation paradigm complementary to parallel
databases. At the same time, the advent of cloud computing
infrastructures such as Amazon EC2 and Rackspace, makes
large-scale cluster computing accessible even to small com-
panies [2]. The prevalence of SQL-like interfaces such as
Hive [3] and Pig [4] further ease the migration of traditional
database workloads to the Cloud.

Data intensive computing in the Cloud presents new chal-
lenges for system management and design. Key questions in-
clude how to optimize scheduling, reduce resource contention,
and adapt to changing loads. The penalty for suboptimal deci-
sions is amplified by the large number of simultaneous users
and the sheer volume of data. As we will argue, heuristics
and cost functions traditionally used for query optimization
no longer suffice, and resource management strategies increas-
ingly involve multiple metrics of success. Thus, there is the
need for accurate performance prediction mechanisms to guide
scheduling and resource management decisions, and realistic
workload generators to evaluate the choice of policies prior to
full production deployment.

In this work, we describe and evaluate a statistical frame-
work that uses Kernel Canonical Correlation Analysis (KCCA)
to predict the execution time of MapReduce jobs (Section III).
This framework is an extension to our work in [5], where we
have demonstrated the effectiveness of the KCCA technique
for predicting query performance in parallel databases. Our

key technical finding is that with the right choice of predictive
features, KCCA leads to highly accurate predictions that
improve with the quality and coverage of performance data.
These features form the basis of a statistics-driven workload
generator that synthesizes realistic workloads using the models
developed in the KCCA framework (Section IV). This work-
load generator allows us to evaluate MapReduce optimizations
on realistic workloads in the absence of a widely accepted
performance benchmark. As we will detail, the workload
generator relies on useful features identified by the prediction
framework, as well as components that are common across dif-
ferent applications and computing paradigms. In other words,
we argue that an effective prediction model is a prerequisite
for a good workload generator. Conversely, a good workload
generator allows the KCCA prediction framework to guide
hardware, configuration and system management choices with-
out committing a full implementation on a production cluster.

We begin our discussion with an overview of MapReduce
(Section II), and we interleave reviews of relevant related work
where appropriate. Our paper builds the case for statistics-
driven distributed system modeling and design, an approach
that is extensible to computing paradigms other than parallel
databases and MapReduce.

II. MAPREDUCE OVERVIEW

MapReduce was initially developed at Google for parallel
processing of large datasets [1]. Today, MapReduce powers
Google’s flagship web search service, as well as clusters at
Yahoo!, Facebook, and others [6]. Programs written using
MapReduce are automatically executed in a parallel fash-
ion on the cluster. Also, MapReduce can run on clusters
of cheap commodity machines, an attractive alternative to
expensive, specialized clusters. MapReduce is highly scalable,
allowing petabytes of data to be processed on thousands and
even millions of machines. Most importantly for our work,
MapReduce is especially suitable for the KCCA prediction
framework because it has a homogeneous execution model,
and production MapReduce workloads often have repeated
queries on similar or identical datasets.

At its core, MapReduce has two user-defined functions. The
Map function takes in a key-value pair, and generates a set of
intermediate key-value pairs. The Reduce function takes in all
intermediate pairs associated with a particular key, and emits
a final set of key-value pairs. Both the input pairs to Map
and the output pairs of Reduce are placed in an underlying
distributed file system (DFS). The run-time system takes care
of retrieving from and outputting to the DFS, partitioning

the data, scheduling parallel execution, coordinating network
communication, and handling machine failures.

A MapReduce execution occurs in several stages. There
is a master daemon that coordinates a cluster of workers.
The master divides the input data into many splits, each
read and processed by a Map worker. The intermediate key-
value pairs are periodically written to the local disk at the
Map workers, usually separate machines from the master,
and the locations of the pairs are sent to the master. The
master forwards these locations to the Reduce workers, who
read the intermediate pairs from Map workers using remote
procedure call (RPC). After a Reduce worker has read all the
intermediate pairs, it sorts the data by the intermediate key,
applies the Reduce function, and appends the output pairs
to a final output file for the Reduce partition. If any of the
Map or Reduce executions lags behind, backup executions are
launched. An entire MapReduce computation is called a job,
and the execution of a Map or Reduce function on a worker
is called a task. Each worker node allocates resources in the
form of slots and each Map task or Reduce task uses one slot.

For our work, we select the Hadoop implementation of
MapReduce [7]. The Hadoop distributed file system (HDFS)
implements many features of the Google DFS [8]. The open
source nature of Hadoop has made it a target for optimizations,
e.g., an improved way to launch backup tasks [9], a fair sched-
uler for multi-user environments [10], pipeline task execution
and streaming queries [11], and resource managers from mul-
tiple computational frameworks including MapReduce [12].

There have been several efforts to extend Hadoop to ac-
commodate different data processing paradigms. Most relevant
to our work, Hive [3] is an open source data warehouse
infrastructure built on top of Hadoop. Users write SQL-style
queries in a declarative language called HiveQL, which is
compiled into MapReduce jobs and executed on Hadoop. Hive
represents a natural place to begin our effort to extend the
KCCA prediction framework to Hadoop.

III. PREDICTING PERFORMANCE OF HADOOP JOBS

Our goal is to predict Hadoop job performance by corre-
lating pre-execution features and post-execution performance
metrics. We take inspiration from the success of using sta-
tistical techniques to predict query performance in parallel
databases [5]. KCCA allows us to simultaneously predict
multiple performance metrics using a single model. This
property captures interdependencies between multiple metrics,
a significant advantage over more commonly used techniques
such as Regression, which model a single metric at a time.
For a more detailed comparison of KCCA to other statistical
techniques, we refer the reader to [13].

Since Hive’s query interface is similar to that of commercial
parallel databases, it is a natural extension to evaluate the
prediction accuracy of Hive queries in Hadoop using the
KCCA technique as described in [5].

A. KCCA Prediction Framework
Figure 1 summarizes our adaptation of KCCA for Hadoop

performance modeling. The first step in using KCCA-based

1 … N

1

:

:

N

1 … N

1

:

:

N

K!
K"

K!*A K"*B

#$$%!

0 K!K"

K"K! 0

K!K! 0

0 K"K"

%&

'&

=

%&

'&

()*++,!
-./0+/1)23.&

4.35+/&

6+7&8.93/:,5+/&

4.35+/&

X Y

"#$%#&!'(%)*+%! "#$%#&!'(%)*+%!

,!

Fig. 1. Training: KCCA projects vector of Hadoop job features and
performance features onto dimensions of maximal correlation across the data
sets. Furthermore, its clustering effect causes “similar” jobs to be collocated.

modeling is to represent each Hadoop job as a feature vector of
job characteristics and a corresponding vector of performance
metrics. This step is the only place where we deviate from
the winning methodology in [5]. We explain our choice of
feature vectors in Section III-B.

The core idea behind using the KCCA algorithm is that
multi-dimensional correlations are difficult to extract from the
raw data of job features and performance features. KCCA
allows us to project the raw data onto subspaces α and β
such that the projections of the data are maximally correlated.

The precise mathematical construction is as follows. We
start with N job feature vectors xk and corresponding per-
formance vectors yk. We form an N × N matrix Kx whose
(i, j)th entry measures the similarity between (xi,xj), and
another N×N matrix Ky whose (i, j)th entry is the similarity
between (yi,yj). Our similarity metric is constructed from
Gaussian kernel functions as discussed in [5]. Our prior work
in [5] also discusses the impact of different kernel functions.

We then project Kx and Ky onto subspaces α and β.
For this projection step, KCCA calculates the projection
matrices A and B, respectively consisting of the basis vectors
of subspaces α and β. In particular, the matrices A and
B are calculated using the generalized eigenvector problem
formulation in Figure 1 such that the projections Kx × A
and Ky × B are maximally correlated. In other words, job
feature projections Kx×A and performance feature projections
Ky × B are collocated on subspaces α and β. Thus, we can
leverage subspaces α and β for performance prediction.

Once we build the KCCA model, performance prediction is
as follows. Beginning with a Hive query whose performance
we want to predict, we create job feature vector x̂ and calculate
its coordinates in subspace α. We infer the job’s coordinates
on the performance projection subspace β by using its 3
nearest neighbors in the job projection. This inference step is
possible because KCCA projects the raw data onto dimensions

of maximal correlation, thereby collocating points on the
job and performance projections. Finally, our performance
prediction is calculated using a weighted average of the 3
nearest neighbors’ raw performance metrics.

We evaluate this methodology using data from a production
Hadoop deployment at a major web service. This deployment
was on a multi-user environment comprising hundreds of
homogeneous nodes, with a fixed number of map and reduce
slots per node based on available memory.

We extracted our data from Hadoop job history logs, which
are collected by the cluster’s Hadoop master node to track
details of every job’s execution on the cluster. From these
job logs, we construct performance feature vectors to include
map time, reduce time, and total execution time. These metrics
are central to any scheduling decisions. We also include data
metrics such as map output bytes, HDFS bytes written, and
locally written bytes.

There are several possible options for job feature vectors.
The choice greatly affects prediction accuracy. Luckily, the
best choice is intuitive and leads to good prediction accuracy.

B. Prediction Accuracy for Hive

The first choice of job feature vectors is an extension of
feature vectors in [5], proved effective for parallel databases.

Like relational database queries, Hive queries are translated
into execution plans involving sequences of operators. We
observed 25 recurring Hive operators, including Create Table,
Filter, Forward, Group By, Join, Move and Reduce Output, to
name a few. Our initial job feature vector contained 25 features
- corresponding to the number of occurrences of each operator
in a job’s execution plan.

Figure 2 compares the predicted and actual execution time
using Hive operator instance counts as job features. The
prediction accuracy was very low, with an negative R2 value,
indicating poor correlation between predicted and actual values
1. Our results suggest that Hive operator occurrence counts are
insufficient for modeling Hive query performance.

This finding is somewhat unsurprising. Unlike relational
databases, Hive executions plans are an intermediate step
before determining the number and configuration of maps
and reduces to be executed as a Hadoop job. Job count and
configuration are likely to form more effective job feature
vectors, since they describes the job at the lowest level of
abstraction visible prior to executing the job.

Thus, our next choice of job feature vector used Hive
query’s configuration parameters and input data characteristics.
We included the number and location of maps and reduces
required by all Hadoop jobs generated by each Hive query,
and data characteristics such as bytes read locally, bytes read
from HDFS, and bytes input to the map stage.

Figure 3 shows our prediction results for the same training
and test set of Hive queries as in Figure 2. Our R2 prediction
accuracy is now 0.87 (R2 = 1.00 signifies perfect prediction).

1Negative R2 values are possible since the training data and test data are
disjoint. Note that this metric is sensitive to outliers. In several cases, the R2

value improved significantly by removing the top one or two outliers.

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

Prediected Execution Time (sec)

A
c
tu

a
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e
c
)

Student Version of MATLAB

Fig. 2. Predicted vs. actual execution time for Hive queries, modeled using
Hive operator instance counts as job features. The model training and test sets
contained 5000 and 1000 Hive queries respectively. The diagonal green line
represents the perfect prediction scenario. Note: the results are plotted on a
log-log scale to accommodate the variance in execution time.

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

Predicted Execution Time (sec)

A
c
tu

a
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Student Version of MATLAB

Fig. 3. Predicted vs. actual execution time for Hive queries, modeled using
job configuration and input data characteristics as job features. The model
training and test sets contained 5000 and 1000 Hive queries respectively. The
diagonal green line represents the perfect prediction scenario. Note: the results
are plotted on a log-log scale to accommodate the variance in execution time.

Using the same model, our prediction accuracy was 0.84 for
map time, 0.71 for reduce time, and 0.86 for bytes written.
Our prediction accuracy was lower for reduce time since
the reduce step is fundamentally exposed to more variability
due to data skew and uneven map finishing times. These
results convincingly demonstrate that feature vectors with job
configuration and input data characteristics enable effective
modeling of Hive query performance.

In future, we can improve prediction accuracy even further
by using more customized kernel functions, two-step KCCA
prediction, and better training set coverage [5].

C. Prediction for Other Hadoop Jobs
A significant advantage of our chosen job and performance

feature vectors is that they contain no features that limit their
scope to Hive queries. As a natural extension, we evaluate our
performance prediction framework on another class of Hadoop
jobs that mimic data warehouse Extract Transform Load (ETL)
operations. ETL involves extracting data from outside sources,
transforming it to fit operational needs, then loading it into
the end target data warehouse. KCCA prediction is especially
effective for Hadoop ETL jobs because the same jobs are
often rerun periodically with varying quantities/granularities
of data. Also, KCCA prediction can bring great value because
ETL jobs are typically long-running. Thus, it is important to
anticipate the job execution times so that system administrators
can plan and schedule the rest of their workload.

10
2

10
4

10
6

10
8

10
2

10
4

10
6

10
8

Predicted Execution Time (sec)

A
c
tu

a
l
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Student Version of MATLAB

Fig. 4. Predicted vs. actual time for ETL jobs, modeled using job
configuration and input data characteristics as job features. The model training
and test sets contained 5000 and 1000 ETL jobs respectively. The diagonal
green line represents the perfect prediction scenario. Note: the results are
plotted on a log-log scale to accommodate the variance in execution time.

Figure 4 shows the predicted vs. actual execution times of
ETL jobs at the same Hadoop deployment. Our R2 prediction
accuracy for job execution time was 0.93. Prediction results for
other metrics were equally good, with R2 values of 0.93 for
map time and 0.85 for reduce time. While the R2 values are
better than Hive predictions, there are some visible prediction
errors for jobs with short execution times. These jobs are
inherently more difficult to predict because the setup time
for big data Hadoop jobs is also on the same time scale.
Nevertheless, the results indicate that the KCCA framework
is also effective for predicting Hadoop ETL jobs.

D. Potential Applications
Our finding has several implications beyond our immediate

work. The high prediction accuracy suggests that related work
on MapReduce optimization should consider augmenting their
mechanisms using KCCA predictions.

For example, others researchers have adapted traditional
query progress heuristics to estimate the execution time of

Pig queries [14]. The technique estimates the remaining query
execution time by comparing the number of tuples processed
to the number of remaining tuples. This heuristic is effective
when there is a constant tuple processing rate during query ex-
ecution. In contrast, our statistical approach remains effective
even if the tuple processing rate changes due to changing data
locality or other effects. Another advantage of our technique
is that we can make an accurate prediction prior to query
execution, instead of halfway through the execution.

In addition, we have a good way to identify lagging tasks
once we have accurate, statistics driven prediction of task
finishing times. The LATE scheduler can use these predictions
instead of the finishing time estimation heuristics in [9],
leading to performance improvements.

Moreover, the Hadoop FAIR scheduler [10] can perform
resource allocation using predicted execution time in addition
to using the number of slots as a resource consumption proxy.
This combination could lead to better resource sharing and
decrease the need for killing or preempting tasks.

Accurate finishing time predictions also enable several other
scheduler policies. One such example is a shortest-job-first
scheduler, where we minimize per-job wait time by executing
jobs in order of increasing predicted execution time. We can
also implement a deadline-driven scheduler that allows jobs
with approaching deadlines to jump the queue “just in time”.

Furthermore, the prediction framework can help with re-
source provisioning. Given predicted resource requirements
and desired finishing time, one can evaluate whether there are
enough resources in the cluster or if more nodes should be
pooled in. If predicted resource requirements are low, one can
assign nodes for other computations, or turn off unnecessary
nodes to reduce power without impacting performance.

E. Ongoing Work

To realize the full potential of our prediction framework,
there are several concerns to address before integrating KCCA
with scheduling and resource management infrastructures.

Different Hadoop workloads: Different organizations have
different computational needs. We need to evaluate the pre-
diction effectiveness for different workloads to increase confi-
dence in the KCCA framework. In the absence of a represen-
tative MapReduce benchmark, we must rely on case studies on
production logs. However, access to production logs involve
data privacy and other logistical issues. Thus, we need a way to
anonymize sensitive information while preserving a statistical
description of the MapReduce jobs and performance.

Different job types: Here, we have obtained prediction
results for Hive queries and ETL jobs. However, we believe
the prediction framework is applicable for a more generic set
of Hadoop jobs. The features we used for our predictions are
common to all Hadoop jobs. Given that resource demands vary
by the map and reduce functions, we can augment feature vec-
tors with specific map and reduce function identifiers and/or
the language in which these functions were implemented.

Different resources: A good scheduler should understand
whether particular jobs have conflicting or orthogonal resource

demands. However, due to hardware and configuration dif-
ferences, we cannot directly compare resource consumption
between different clusters. If we can “rerun” the workload
with good instrumentation, we can monitor the utilization of
various resources including CPU, disk, network. This capabil-
ity allows us to augment the job feature vector with resource
consumption levels, providing more accurate predictions to
the scheduler. Furthermore, we can “rerun” the workload
on different hardware and cluster configurations, turning the
KCCA framework into an even more powerful tool that can
guide decisions on hardware and configuration choices.

The next section describes a workload generation frame-
work that takes advantage of these opportunities.

IV. TOWARDS A WORKLOAD GENERATION FRAMEWORK

Recent research on MapReduce has relied on sort jobs
and grid-mix [15] to generate evaluation workloads. These
techniques are criticized for their inadequate diversity in data
transfer patterns and insufficient evaluation of performance
in a steady but non-continuous job streams. In contrast, our
predecessor work benefited from the widely accepted TPC-
DS database benchmark for its evaluations. In this section, we
describe our initial work towards developing a MapReduce
workload generation framework that captures the statistical
properties of production MapReduce traces. The workload
generator can act as a richer synthetic benchmark compared
to current MapReduce evaluation methods.

We have several design goals. First, the framework must
mask the actual computation done by jobs to prevent leakage
of confidential competitive information. Often, MapReduce
job source code reveals trade secrets about the scale and
granularity of data processed for companies’ core business
decisions. Hiding job-specific characteristics would encourage
companies to contribute traces towards the workload gener-
ation framework. Second, the framework has to be agnostic
to the hardware, MapReduce implementation, and cluster
configurations. This goal allows our framework to be used
without the need to replicate production cluster environments.
Third, the framework has to accommodate different cluster
sizes and workload durations. This property allow us to
investigate provisioning the right cluster size for a particular
type of workload, and understanding both short and long-term
performance characteristics.

The following design satisfies these goals. We start by
extracting a statistical summary of the production MapReduce
trace. This summary includes a distribution of inter-job arrival
times and a distribution of job counts according to job name.
For each job name, we also extract the distribution of job
input sizes and input/shuffle/output data ratios. We scale the
job input sizes by the number of nodes in the cluster. This
adjustment preserves the amount of data processed by each
node, facilitating a comparison of different node types, e.g.
big nodes with more cores vs. small nodes with few cores.
We then probabilistically sample the distributions to generate
the workload as vectors of [launch times, job name, input size,
and input/shuffle/output data ratios]. The job finishing time is

not among the input data to the workload generator because
it is the prediction output of our model.

It may require an unwieldy amount of data to accurately
represent the statistical distributions. Therefore, we only ex-
tract the 1st, 25th, 50th, 75th, and 99th percentiles for the
distributions of inter-job arrival times, input sizes, and data
ratios. We do linear extrapolation between these percentiles to
approximate the full distributions.

The precise algorithm is as follows:
1) From production trace

• Compute the 1st, 25th, 50th, 75th, and 99th per-
centiles of inter-job arrival times.

• Compute the CDF of job counts by jobName.
• For each job, compute the 1st, 25th, 50th, 75th, and

99th percentiles of scaled input sizes, shuffle-input
data ratio, and output-shuffle data ratio.

2) Perform probabilistic sampling on
• The approximated distribution of inter-job arrival

times to get t.
• The truncated CDF of job counts to get jobName.
• The approximated distribution of scaled input sizes

for jobName to get inputSize.
• The approximated distribution of shuffle-input data

ratio for jobName to get shuffleInputRatio.
• The approximated distribution of output-shuffle data

ratio for jobName to get outputShuffleRatio.
3) Add to workload [t, jobName, inputSize,

shuffleInputRatio, outputShuffleRatio].
We repeat steps 2 and 3 until we have the required workload

size in terms of either the number of jobs or the time duration
of the workload.

This algorithm requires us to have a MapReduce job that ad-
heres to specified shuffle-input and output-shuffle data ratios.
This job is a straightforward modification of randomwrite,
a code example included in recent Hadoop distributions.

There are several trade-offs associated with such a workload
generator. Most visibly, we do not capture the compute part
of MapReduce jobs. As explained by our goals, this trade-
off is necessary, since knowledge of the computation could
lead to a leakage of confidential information. On the other
hand, it allows us to compare workloads from organizations
using MapReduce for different computations. Moreover, we
still capture the workload data transfer activity, which is often
the biggest contributor to overall job finishing time. With a full
implementation of our workload generator, we can concretely
verify whether this is a sufficiently common case.

Another trade-off is the loss of hardware, data locality, and
cluster configuration information from the initial job trace. The
advantage of a hardware, locality, and configuration indepen-
dent workload is that we can ”re-run” workloads on different
choices of hardware, MapReduce schedulers/implementations,
and cluster configurations. Thus, we would be able to antic-
ipate which choice would lead to the fastest finishing time
for the workload at hand. This is a fundamentally different
approach than detailed Hadoop simulators such as Mumak

[16], which is required for expediting the design and evaluation
cycle of heuristics driven mechanisms.

We also do not capture any data skew that may affect
MapReduce finishing time. This is also a conscious decision.
Data skew would cause some map tasks or reduce tasks finish
slower than the others and hold up the entire job. Thus, well-
written MapReduce jobs should include mechanisms like hash
functions to remove data skew, and our workload generator
encompasses the desired operating mode.

Lastly, despite appearances, the choice of 1st, 25th, 50th,
75th, and 99th percentiles is anything but ad-hoc. These
percentiles correspond to the five-number summary of statis-
tical distributions, i.e. min, max, median, quantiles. The key
strength of this summary is that it makes no assumptions about
the underlying statistical distribution while capturing both the
dispersion and skew in the data. Any sensitivity of quantile
boundaries due to perturbations in the data would be bounded
by the neighboring quantile boundaries. While capturing the
complete distribution would be ideal, we believe the five-
number summary is an acceptable trade-off.

We believe that such a workload generator would allow
us to apply our KCCA prediction framework on different
hardware, MapReduce implementations, and cluster configu-
rations, while preserving the data transfer characteristics of
the production traces. Thus, the KCCA prediction framework
becomes a powerful tool that can guide choice of hardware,
MapReduce schedulers/optimizers, and cluster configurations.
At the same time, this architecture provides a framework for
MapReduce operators to contribute anonymized production
traces that would benefit the research community as a whole.

V. SUMMARY AND OPEN QUESTIONS

We have presented a statistics-driven modeling framework
for data-intensive applications in the Cloud. We demonstrated
good prediction accuracy on production Hadoop data analytic
and warehousing jobs. We can leverage KCCA-based pre-
dictions for making decisions including job scheduling, re-
source allocation, and workload management. A precondition
to implementing and validating frameworks for resource man-
agement is the presence of representative, realistic, portable
workloads. We have also described a statistics-driven workload
generator to meet this prerequisite.

There are several unanswered questions for resource man-
agement in the Cloud. First, it is unclear what granularity of
scheduling decisions is appropriate in Hadoop. Concurrently
scheduled jobs lead to variability in a job’s performance, while
concurrent tasks on the same node create variability in task
finishing times. This problem is further complicated in clusters
shared among various applications and not exclusively used
by Hadoop [12]. One could devise per-application scheduling
techniques, per-job techniques, per-task techniques, or per-
node techniques; the limitations of each remain unexplored.

Next, several cloud computing infrastructures use virtual
machines to provide isolation and abstract away resource
availability. However, the additional layer of abstraction also
creates complexity for performance modeling and decision

making. An open challenge is to optimize resource usage
through VM placement. The KCCA prediction framework
could help address this challenge, provided we verify its
effectiveness in VM environments.

Lastly, an opportunity yet to be capitalized in performance
modeling is to appropriately account for variability inherent
within a platform. It would be useful to normalize measured
performance metrics with respect to each node’s historical
behavior, such as resource availability, average response time,
and failure profile.

We have a working prototype of our statistics-driven work-
load generator. We plan to use this framework to evaluate
potential solutions to the above issues, as well as to develop
and evaluate our ideas on resource management. Our work
demonstrates the advantage of statistics over heuristics in
system optimization. We strongly believe that the statistical
approach is relevant to a variety of modern distributed systems
and parallel computing platforms.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, January 2008.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the Clouds: A Berkeley View of Cloud Computing,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2009-28, 2009.

[3] A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive - A Warehousing Solution
Over a MapReduce Framework,” in Proc. International Conference on
Very Large Data Bases, 2009.

[4] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: A Not-So-Foreign Language for Data Processing,” in Proc. ACM
SIGMOD International Conference on Management of Data, 2008.

[5] A. Ganapathi, H. Kuno, U. Daval, J. Wiener, A. Fox, M. Jordan, and
D. Patterson, “Predicting Multiple Performance Metrics for Queries:
Better Decisions Enabled by Machine Learning,” in Proc International
Conference on Data Engineering, 2009.

[6] “Hadoop Power-By Page,” http://wiki.apache.org/hadoop/PoweredBy.
[7] “Hadoop,” http://hadoop.apache.org.
[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”

SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 29–43, 2003.
[9] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,

“Improving MapReduce Performance in Heterogeneous Environments,”
in Symposium on Operating Systems Design and Implementation, 2008.

[10] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Job Scheduling for Multi-User MapReduce Clusters,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2009-55, 2009.

[11] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears, “MapReduce Online,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-136, 2009.

[12] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
S. Shenker, and I. Stoica, “Nexus: A Common Substrate for Cluster
Computing,” Workshop on Hot Topics in Cloud Computing, 2009.

[13] A. Ganapathi, “Predicting and Optimizing System Utilization and Per-
formance via Statistical Machine Learning,” Ph.D. dissertation, UC
Berkeley, 2009.

[14] K. Morton, A. Friesen, M. Balazinska, and D. Grossman, “Estimating the
Progress of MapReduce Pipelines,” in Proc. International Conference on
Data Engineering, 2010.

[15] “Gridmix,” HADOOP-HOME/src/benchmarks/gridmix in all recent
Hadoop distributions.

[16] “Mumak,” http://issues.apache.org/jira/browse/MAPREDUCE-728, last
retrieved Nov. 2009.

