
Design Implications for Enterprise Storage Systems via
Multi-Dimensional Trace Analysis

Yanpei Chen, Kiran Srinivasan∗, Garth Goodson∗, Randy Katz
University of California, Berkeley, ∗NetApp Inc.

{ychen2, randy}@eecs.berkeley.edu, ∗{skiran, goodson}@netapp.com

ABSTRACT
Enterprise storage systems are facing enormous challenges
due to increasing growth and heterogeneity of the data stored.
Designing future storage systems requires comprehensive in-
sights that existing trace analysis methods are ill-equipped
to supply. In this paper, we seek to provide such insights
by using a new methodology that leverages an objective,
multi-dimensional statistical technique to extract data ac-
cess patterns from network storage system traces. We apply
our method on two large-scale real-world production net-
work storage system traces to obtain comprehensive access
patterns and design insights at user, application, file, and
directory levels. We derive simple, easily implementable,
threshold-based design optimizations that enable efficient
data placement and capacity optimization strategies for servers,
consolidation policies for clients, and improved caching per-
formance for both.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques;
D.4.3 [Operating Systems]: File Systems Management—
Distributed file systems

1. INTRODUCTION
Enterprise storage systems are designed around a set of data
access patterns. The storage system can be specialized by
designing to a specific data access pattern; e.g., a storage
system for streaming video supports different access patterns
than a document repository. The better the access pattern
is understood, the better the storage system design. In-
sights into access patterns have been derived from the anal-
ysis of existing file system workloads, typically through trace
analysis studies [1, 3, 17, 19, 24]. While this is the correct
general strategy for improving storage system design, past
approaches have critical shortcomings, especially given re-
cent changes in technology trends. In this paper, we present
a new design methodology to overcome these shortcomings.

The data stored on enterprise network-attached storage sys-
tems is undergoing changes due to a fundamental shift in
the underlying technology trends. We have observed three
such trends, including:

• Scale: Data size grows at an alarming rate [12], due
to new types of social, business and scientific applica-
tions [20], and the desire to “never delete” data.

• Heterogeneity : The mix of data types stored on these
storage systems is becoming increasingly complex, each
having its own requirements and access patterns [22].

• Consolidation: Virtualization has enabled the consolida-
tion of multiple applications and their data onto fewer
storage servers [6, 23]. These virtual machines (VMs)
also present aggregate data access patterns more com-
plex than those from individual clients.

Better design of future storage systems requires insights into
the changing access patterns due to these trends. While
trace studies have been used to derive data access patterns,
we believe that they have the following shortcomings:

• Unidimensional: Although existing methods analyze many
access characteristics, they do so one at a time, without
revealing cross-characteristic dependencies.

• Expertise bias: Past analyses were performed by storage
system designers looking for specific patterns based on
prior workload expectations. This introduces a bias that
needs to be revisited based on the new technology trends.

• Storage server centric: Past file system studies focused
primarily on storage servers. This creates a critical knowl-
edge gap regarding client behavior.

To overcome these shortcomings, we propose a new design
methodology backed by the analysis of storage system traces.
We present a method that simultaneously analyzes multi-
ple characteristics and their cross dependencies. We use a
multi-dimensional, statistical correlation technique, called
k-means [2], that is completely agnostic to the character-
istics of each access pattern and their dependencies. The
K-means algorithm can analyze hundreds of dimensions si-
multaneously, providing added objectivity to our analysis.
To further reduce expertise bias, we involve as many rele-
vant characteristics as possible for each access pattern. In
addition, we analyze patterns at different granularities (e.g.,
at the user session, application, file level) on the storage
server as well as the client, thus addressing the need for un-
derstanding client patterns. The resulting design insights
enable policies for building new storage systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

43

Client side observations and design implications Server side observations and design implications

1. Client sessions with IO sizes >128KB are read only or
write only. ⇒ Clients can consolidate sessions based on
only the read-write ratio.

2. Client sessions with duration >8 hours do ≈10MB of IO.
⇒ Client caches can already fit an entire day’s IO.

3. Number of client sessions drops off linearly by 20% from
Monday to Friday. ⇒ Servers can get an extra “day” for
background tasks by running at appropriate times during
week days.

4. Applications with <4KB of IO per file open and many
opens of a few files do only random IO. ⇒ Clients should
always cache the first few KB of IO per file per application.

5. Applications with >50% sequential read or write access
entire files at a time. ⇒ Clients can request file prefetch
(read) or delegation (write) based on only the IO sequen-
tiality.

6. Engineering applications with >50% sequential read and
sequential write are doing code compile tasks, based on file
extensions. ⇒ Servers can identify compile tasks; server
has to cache the output of these tasks.

7. Files with >70% sequential read or write have no repeated
reads or overwrites. ⇒ Servers should delegate sequen-
tially accessed files to clients to improve IO performance.

8. Engineering files with repeated reads have random ac-
cesses. ⇒ Servers should delegate repeatedly read files
to clients; clients need to store them in flash or memory.

9. All files are active (have opens, IO, and metadata access)
for only 1-2 hours in a few months. ⇒ Servers can use file
idle time to compress or deduplicate to increase storage
capacity.

10. All files have either all random access or >70% sequential
access. (Seen in past studies too) ⇒ Servers can select
the best storage medium for each file based on only access
sequentiality.

11. Directories with sequentially accessed files almost always
contain randomly accessed files as well. ⇒ Servers can
change from per-directory placement policy (default) to
per-file policy upon seeing any sequential IO to any files
in a directory.

12. Some directories aggregate only files with repeated reads
and overwrites. ⇒ Servers can delegate these directories
entirely to clients, tradeoffs permitting.

Table 1: Summary of design insights, separated into insights derived from client access patterns and server access patterns.

We analyze two recent, network-attached storage file sys-
tem traces from a production enterprise datacenter. Table
1 summarizes our key observations and design implications,
they will be detailed later in the paper. Our methodology
leads to observations that would be difficult to extract using
past methods. We illustrate two such access patterns, one
showing the value of multi-granular analysis (Observation 1
in Table 1) and another showing the value of multi-feature
analysis (Observation 8).

First, we observe (Observation 1) that sessions with more
than 128KB of data reads or writes are either read-only or
write-only. This observation affects shared caching and con-
solidation policies across sessions. Specifically, client OSs
can detect and co-locate cache sensitive sessions (read-only)
with cache insensitive sessions (write-only) using just one pa-
rameter (read-write ratio). This improves cache utilization
and consolidation (increased density of sessions per server).

Similarly, we observe (Observation 8) that files with >70%
sequential read or sequential write have no repeated reads or
overwrites. This access pattern involves four character-
istics: read sequentiality, write sequentiality, repeated read
behavior, and overwrite behavior. The observation leads to
a useful policy: sequentially accessed files do not need to be
cached at the server (no repeated reads), which leads to an
efficient buffer cache.

These observations illustrate that our methodology can de-
rive unique design implications that leverage the correlation
between different characteristics. To summarize, our contri-
butions are:

• Identify storage system access patterns using a multi-
dimensional, statistical analysis technique.

• Build a framework for analyzing traces at different gran-
ularity levels at both server and client.

• Analyze our specific traces and present the access pat-
terns identified.

• Derive design implications for various storage system
components from the access patterns.

In the rest of the paper, we motivate and describe our anal-
ysis methodology (Sections 2 and 3), present the access pat-
terns we found and the design insights (Section 4), provide
the implications on storage system architecture (Section 5),
and suggest future work (Section 6).

2. MOTIVATION AND BACKGROUND
Past trace-based studies have examined a range of storage
system protocols and use cases, delivering valuable insights
for designing storage servers. Table 2 summarizes the con-
tributions of past studies. Many studies predate current
technology trends. Analysis of real-world, corporate work-
loads or traces have been sparse, with only three studies
among the ones listed [13, 15, 18]. A number of studies
have focused on NFS trace analysis only [8, 10]. This fo-
cus somewhat neglects systems using the Common Internet
File System (CIFS) protocol [5], with only a single CIFS
study [15]. CIFS systems are important since CIFS is the
network storage protocol for Windows, the dominant OS
on commodity platforms. Our work uses the same traces
as [15], but we perform analysis using a methodology that
extracts multi-dimensional insights at different layers. This
methodology is sufficiently different from prior work as to
make the analysis findings not comparable. The following
discusses the need for this methodology.

2.1 Need for Insights at Different Layers
We divide our view of the storage system into behavior at
clients and servers. Storage clients interface directly with
users, who create and view content via applications. Sep-
arately, servers store the content in a durable and efficient
fashion over the network. Past network storage system trace
studies focus mostly on storage servers (Table 2). Storage
client behavior is underrepresented primarily due to the re-
liance on stateless NFS traces. This leaves a knowledge gap
about access patterns at storage clients. Specifically, these
questions are unanswered:

• Do applications exhibit clear access patterns?
• What are the user-level access patterns?
• Any correlation between users and applications?
• Do all applications interact with files the same way?

44

Study Date of File N/w Multi- Multi- Data Trace Insights/
Traces System FS Dim. Layer Set Info Contributions

Ousterhout, et al. [17] 1985 BSD Eng Live Seminal patterns analysis: Large, se-
quential read access; limited read-write;
bursty I/O; short file lifetimes, etc.

Ramakrishnan, et al. [18] 1988-89 VAX/
VMS

� Eng,
HPC,
Corp

Live Relationship between files and processes
- on usage patterns, sharing, etc.

Baker, et al. [3] 1991 Sprite � Eng Live Analysis of distributed file system; com-
parison to [17], caching effects.

Gribble, et al. [10] 1991-97 Sprite,
NFS,
VxFS

� Eng,
Backup

Live,
Snap

Workload self-similarity

Douceur, et al. [7] 1998 FAT,
FAT32,
NTFS

Eng Snap Analysis of file and directory attributes:
size, age, lifetime, directory depth

Vogels [24] 1998 FAT,
NTFS

Eng,
HPC

Live,
Snap

Supported past observations and trends
in NTFS

Zhou et al. [25] 1999 VFAT PC Live Analysis of personal computer work-
loads

Roselli, et al. [19] 1997-00 VxFS,
NTFS

Eng,
Server

Live Increased block lifetimes, caching
strategies

Ellard, et al. [8] 2001 NFS � Eng,
Email

Live NFS peculiarities, pathnames can aid
file layout

Agrawal, et al. [1] 2000-04 FAT,
FAT32,
NTFS

Eng Snap Distribution of file size and type in
namespace, change in file contents over
time

Leung, et al. [15] 2007 CIFS � Corp,
Eng

Live File re-open, sharing, activity charac-
teristics; changes compared to previous
studies

Kavalanekar, et al. [13] 2007 NTFS Web,
Corp

Live Study of web (live maps, web content,
etc.) workloads in servers via events
tracing.

This paper 2007 CIFS � � � Corp,
Eng

Live Section 4

Table 2: Past studies of storage system traces. “Corp” stands for corporate use cases. “Eng” stands for engineering use cases.

“Live” implies live requests or events in traces were studied, “Snap” implies snapshots of file systems were studied.

Insights on these access patterns lead to better design of
both clients and servers. They enable server capabilities such
as per session quality of service (QoS), or per application
service level objectives (SLOs). They also inform various
consolidation, caching, and prefetching decisions at clients.

Each of these access patterns is visible only at a particular
semantic layer within the client: users or applications. We
define each such layer as an access unit, with the observed
behaviors at each access unit being an access pattern. The
analysis of client side access units represents an improvement
on prior work.

On the server side, we extend the previous focus on files.
We need to also understand how files are grouped within
a directory, as well as cross-file dependencies and directory
organization. Thus, we perform multi-layer and cross-layer
dependency analysis on the server also. This is another im-
provement on past work.

2.2 Need for Multi-Dimensional Insights
Each access unit has certain inherent characteristics. Char-
acteristics that can be quantified are features of that access
unit. For example, for an application, the read size in bytes
is a feature; the number of unique files accessed is another.
Each feature represents an independent mathematical di-
mension that describes an access unit. We use the terms
dimension, feature, and characteristic interchangeably. The
global set of features for an access unit is limitless. Picking
a good feature set requires domain knowledge.

Many recent studies analyze access patterns only one feature
at a time. This represents a key limitation. The resulting
insights, although valuable, lead to uniform policies around
a single design point. For example, study [15] revealed that
most bytes are transferred from larger files. Although this is
an useful observation, it does not reveal other characteristics
of such large files: Do they have repeated reads? Do they
have overwrites? Do they have many metadata requests?
And so on. Adding these dimensions breaks up the predom-
inant access pattern into smaller, minority access patterns,
each may require a specific storage policy.

Understanding minority access patterns is increasingly im-
portant, because the trend toward data heterogeneity im-
plies that no “common case” will dominate storage system
behavior. Minority access patterns become visible only upon
analyzing multiple features simultaneously, hence the need
for multi-dimensional insights. We also need to select a rea-
sonable number of features. Doing so allows us to fully de-
scribe the access patterns and reduce the bias in picking any
one feature.

Manually identifying multi-feature dependencies is difficult,
and can lead to an untenable analysis. Therefore, we need
techniques that analyze a large number of features, scale
to a high number of analysis data points, and do not re-
quire a priori knowledge of any cross-feature dependencies.
Multi-dimensional statistics techniques have solved similar
problems in other domains [4, 9, 21]. We can apply similar
techniques and combine them with domain specific knowl-
edge of the storage systems being analyzed.

45

In short, the need for multi-layered and multi-dimensional
insights motivates our methodology.

3. METHODOLOGY
In this section, we describe our analysis method in detail.
We start with a description of the traces we analyzed, fol-
lowed by a description of the access units selected for our
study. Next, we describe key steps in our analysis process,
including selecting the right features for each access unit, us-
ing the k-means data clustering algorithm to identify access
patterns, and additional information needed to interpret and
generalize the results.

3.1 Traces Analyzed
We collected CIFS traces from two large-scale, enterprise-
class file servers deployed at our corporate datacenters. One
server covers roughly 1000 employees in marketing, sales,
finance, and other corporate roles. We call this the corporate
trace. The other server covers roughly 500 employees in
various engineering roles. We call this the engineering trace.
We described the trace collecting infrastructure in [15].

The corporate trace reflects activities on 3TB of active stor-
age from 09/20/2007 to 11/21/2007. It contains activity
from many Windows applications. The engineering trace re-
flects activities on 19TB of active storage from 08/10/2007
to 11/14/2007. It interleaves activity from both Windows
and Linux applications. In both traces, many clients use
virtualization technologies. Thus, we believe we have rep-
resentative traces with regards to the technology trends in
scale, heterogeneity, and consolidation. Also, since protocol-
independent users, applications, and stored data remain the
primary factors affecting storage system behavior, we believe
our analysis is relevant beyond CIFS.

3.2 Access Units
As mentioned in Section 2.1, we analyze access patterns at
multiple access units at the server and the client. Selecting
access units is subjective. We chose access units that form
clear semantic design boundaries. On the client side, we
analyze two access units:

• Sessions: Sessions reflect aggregate behavior of an user.
A CIFS session is bounded by matching session connect
and logoff requests. CIFS identifies it by a tuple - {client
IP address, session ID}.

• Application instance: Analysis at this level leads to ap-
plication specific optimizations in client VMs. CIFS iden-
tifies each application instance by the tuple - {client IP
address, session ID, and process ID}.

We also analyzed file open-closes, but obtained no useful
insights. Hence we omit that access unit from the paper.

We also examined two server side access units:

• File: Analyzing file level access patterns facilitates per-
file policies and optimization techniques. Each file is
uniquely identified by its full path name.

• Deepest subtree: This access unit is identified by the di-
rectory path immediately containing the file. Analysis
at this level enables per-directory policies.

Session
App. Instance

App. Instance

Deepest subtree A

File

File

Deepest subtree A/B

File File

App. Instance

Figure 1: Access units analyzed. At clients, each session

contains many application instances. At servers, each subtree

contains many files.

Figure 1 shows the semantic hierarchy among different ac-
cess units. At clients, each session contains many application
instances. At servers, each subtree contains many files.

3.3 Analysis Process
Our method (Figure 2) involves the following steps:

1. Collect network storage system traces (Section 3.1).

2. Define the descriptive features for each access unit.
This step requires domain knowledge about storage
systems (Section 3.3.1).

3. Extract multiple instances of each access unit, and
compute from the trace the corresponding numerical
feature values of each instance.

4. Input those values into k-means, a multi-dimensional
statistical data clustering technique (Section 3.3.2).

5. Interpret the k-means output and derive access pat-
terns by looking at only the relevant subset of features.
This step requires knowledge of both storage systems
and statistics. We also need to extract considerable
additional information to support our interpretations
(Section 3.3.3).

6. Translate access patterns to design insights.

We give more details about Steps 2, 4, and 5 below.

3.3.1 Selecting features for each access unit
Selecting the set of descriptive features for each access unit
requires domain knowledge about storage systems (Step 2
in Figure 2). It also introduces some subjectivity, since the
choice of features limits on how one access pattern can differ
from another. The human designer needs to select some ba-
sic features initially, e.g., total IO size and read-write ratio
for a file. We will not know whether we have a good set of
features until we have completed the entire analysis process.
If the analysis results leave some design choice ambiguities,
we need to add new features to clarify those ambiguities,
again using domain knowledge. For example, for the deep-
est subtrees, we compute various percentiles (25th, 50th,
and 75th) of certain features like read-write ratio because
the average value for those features did not clearly separate
the access patterns. We then repeat the analysis process
using the new feature set. This iterative process leads to a
long feature set for all access units, somewhat reducing the
subjective bias of a small feature set. We list in Section 4
the chosen features for each access unit.

Most of the features used in our analysis (Section 4) are self-
explanatory; some ambiguous or complex features require
precise definitions, such as:

46

1. Trace
collection

2. Select layers,
define features

3. Compute numerical
feature values

4. Identify access
patterns by k-means

5. Interpret
results

6. Design
implications

Figure 2: Methodology overview. The two-way arrows and

the loop from Step 2 through Step 5 indicate our many iterations

between the steps.

IO: We use “IO” as a substitute for “read and write”.

Sequential reads or writes: We consider two read or writes
requests to be sequential if they are consecutive in time, and
the file offset + request size of the first request equals the file
offset of the second request. A single read or write request
is by definition not sequential.

Repeated reads or overwrites: We track accesses at 4KB
block boundaries within a file, with the offset of the first
block being zero. A read is considered repeated if it ac-
cesses a block that has been read in the past half hour. We
use an equivalent definition for overwrites.

3.3.2 Identifying access patterns via k-means
A key part of our methodology is the k-means multi-dimen-
sional correlation algorithm. We use it to identify access
patterns simultaneously across many features (Step 4 in
Figure 2). K-means is a well-known, statistical correla-
tion algorithm. It identifies sets of data points that con-
gregate around a region in n-dimensional space. These con-
gregations are called clusters. Given data points in an n-
dimensional space, k-means picks k points at random as ini-
tial cluster centers, assigns data points to their nearest clus-
ter centers, and recomputes new cluster centers via arith-
metic means across points in the cluster. K-means iterates
the assignment-recompute process until the cluster centers
become stationary. K-means can run with multiple sets of
initial cluster centers and return the best result [2].

For each access unit, we extract different instances of it from
the trace, i.e., all session instances, application instances,
etc. For each instance, we compute the numerical values of
all its features. This gives us a data array in which each
row correspond to an instance, i.e., a data point, and each
column correspond to a feature, i.e., a dimension. We input
the array into k-means, and the algorithm finds the natural
clusters across all data points. We consider all data points
in a cluster as belonging to a single equivalence class, i.e.,
a single access pattern. The numerical values of the cluster
centers indicate the characteristics of each access pattern.

We choose k-means for two reasons. First, k-means is al-
gorithmically simple. This allows rapid processing on large
data sets. We used a modified version of the k-means C li-
brary [14], in which we made some improvements to limits
the memory footprint when processing large data sizes. Sec-
ond, k-means leads to intuitive labels of the cluster centers.
This helps us translate the statistical behavior extracted
from the traces into tangible insights. Thus, we prefer k-

means to other clustering algorithms such as hierarchical
clustering and k-means derivatives [2].

K-means requires us to specify k, the number of clusters.
This is a difficult task since we do not know a priori the
number of “natural” clusters in the data. We compute the
intra-cluster “residual” variance from the k-means results -
the sum of squared distances from each data point to its
assigned cluster center. This is a standard metric for cluster
quality, and gives us a lower bound on k. We cannot set
k so small that the residual variance forms a large fraction
of the total variance, i.e., residual variance ≈ the sum of
squared distances from each data point to the global average
of all data points. We optionally increase k beyond the
lower bound until some key access patterns can be separated.
Concurrently, we take care not to increase k too high, to
prevent having an unwieldy number of access patterns and
design targets. We applied this reasoning to set k at each
client and server access unit.

3.3.3 Interpreting and generalizing the results
The k-means algorithm gives us a set of access patterns with
various characteristics. We need additional information to
understand the significance of the results. This information
comes from computing various secondary data outside of k-
means analysis (Step 5 in Figure 2:

• We gathered the start and end times of each session in-
stance, aggregated by times of the day and days of the
week. This gave us insight into how users launch and
end sessions.

• We examine filename extensions of files associated with
every access pattern belonging to these access units: ap-
plication instances, files, and deepest subtrees. This in-
formation connects the access patterns to more easily
recognizable file extensions.

• We perform correlation analysis between the file and
deepest subtrees access units. Specifically, we compute
the number of files of each file access pattern that is lo-
cated within directories in each deepest subtree access
pattern. This information captures the organizations of
files in directories.

Such information gives us a detailed picture about the se-
mantics of the access patterns, resulting in human under-
standable labels to the access patterns. Such labels help us
translate observations to design implications.

Furthermore, after identifying the design implications, we
explore if the design insights can be extrapolated to other
trace periods and other storage system use cases. We ac-
complish this by repeating our exact analysis over multiple
subsets of the traces, for example, a week’s worth of traces
at a time. This allow us to examine how our analysis would
be different had we obtained only a week’s trace. Access
patterns that are consistent, stable across different weeks
would indicate that they are likely to be more general than
just our tracing period or our use cases.

4. ANALYSIS RESULTS & IMPLICATIONS
This section presents the access patterns we identified and
the accompanying design insights. We discuss client and

47

(a). Descriptive features for each session
Duration Total metadata requests Overwrite ratio Directories accessed
Total IO size Avg. time between IO requests Tree connects Application instances seen
Read:write ratio by bytes Read sequentiality Unique trees accessed
Total IO requests Write sequentiality File opens
Read:write ratio by requests Repeated read ratio Unique files opened

(b). Corporate session Full day work Half day con- Short content Short content Supporting Supporting
access patterns tent viewing viewing generation metadata read-write
% of all sessions 0.5% 0.7% 1.2% 0.2% 96% 1.4%

Duration 8 hrs 4 hrs 10 min 70 min 7 sec 10 sec
Total IO size 11 MB 3 MB 128 KB 3 MB 0 420 B

Read:write ratio by bytes 3:2 1:0 1:0 0:1 0:0 1:1
Metadata requests 3000 700 230 550 1 20
Read sequentiality 70% 80% 0% - - 0%
Write sequentiality 80% - - 90% - 0%

File opens:files 200:40 80:15 30:7 50:15 0:0 6:3
Tree connect:Trees 5:2 3:2 2:2 2:2 1:1 2:2

Directories accessed 10 7 4 6 0 2
Application instances 4 3 2 2 0 1

(c). Engineering session Full day work Human edit Application gene- Short content Supporting Machine gene-
access patterns small files rated backup/copy generation metadata rated update
% of all sessions 0.4% 1.0% 4.4% 0.4% 90% 3.6%

Duration 1 day 2 hrs 1 min 1 hr 10 sec 10 sec
Total IO size 5 MB 5 KB 2 MB 2 MB 0 36 B

Read:write ratio 7:4 1:1 1:0 0:1 0:0 1:0
Metadata requests 1700 130 40 200 1 0
Read sequentiality 60% 0% 90% - - 0%
Write sequentiality 70% 0% - 90% - -

File opens:files 130:20 9:2 6:5 15:6 0:0 1:1
Tree connect:Trees 1:1 1:1 1:1 1:1 1:1 1:1

Directories accessed 7 2 1 3 0 1
Application instances 4 2 1 1 0 1

Table 3: Session access patterns. (a): Full list of descriptive features. (b) and (c): Short names and descriptions of sessions in

each access pattern; listing only the features that help separate the access patterns.

serve side access patterns (Section 4.1, 4.2). We also check
if these patterns persist across time (Section 4.3).

For each access unit, we list the descriptive features (only
some of which help separate access patterns), outline how we
derived the high-level name (label) for each access pattern,
and discuss relevant design insights.

4.1 Client Side Access Patterns
As mentioned in Section 3.2, we analyze sessions and appli-
cation instances at clients.

4.1.1 Sessions
Sessions reflect aggregate behavior of human users. We used
17 features to describe sessions (Table 3). The corporate
trace has 509,076 sessions, and the engineering trace has
232,033.

In Table 3, we provide quantitative descriptions and short
names for all the session access patterns. We derive the
names from examining the significant features: duration,
read-write ratio, and IO size.

We also looked at the aggregate session start and end times
to get additional semantic knowledge about each access pat-
tern. Figure 3 shows the start and end times for selected ses-
sion access patterns. The start times of corporate full-day
work sessions correspond exactly to the U.S. work day – 9am
start, 12pm lunch, 5pm end. Corporate content generation
sessions show slight increase in the evening and towards Fri-
day, indicating rushes to meet daily or weekly deadlines. In
the engineering trace, the application generated backup and

machine generated update sessions depart significantly from
human workday and work week patterns, leading us to label
them as application and machine (client OS) generated.

One surprise was that the ‘supporting metadata’ sessions
account for >90% of all sessions in both traces. We believe
these sessions are not humanly generated. They last roughly
10 seconds, leaving little time for human mediated interac-
tions. Also, the session start rate averages to roughly one
per employee per minute. We are certain that our colleagues
are not connecting and logging off every minute of the en-
tire day. However, the shape of the start time graphs have a
strong correlation with the human work day and work week.
We call these supporting metadata sessions – machine gen-
erated in support of human user activities. These metadata
sessions form a sort of “background noise” to the storage sys-
tem. We observe the same background noise at other layers
both at clients and servers.

Observation 1: The sessions with IO sizes greater than 128KB
are either read-only or write-only, except for the full-day
work sessions. Among these sessions, only read-only ses-
sions utilize buffer cache for repeated reads and prefetches.
Write-only sessions only use the cache to buffer writes. Thus,
if we have a cache eviction policy that recognizes their write-
only nature and releases the buffers immediately on flush-
ing dirty data, we can satisfy many write-only sessions with
relatively little buffer cache space. We can attain better
consolidation and buffer cache utilization by managing the
ratio of co-located read-only and write-only sessions. This
insight can be used by virtualization managers and client
operating systems to manage a shared buffer cache between
sessions. Recognizing such read-only and write-only sessions

48

0

200

400

600

800

0 8 16 24
hrs of the day

0

200

400

600

800

0 8 16 24
hrs of the day

0

700

1400

2100

2800

0 1 2 3 4 5 6
days of the week

0
500

1000
1500
2000
2500
3000
3500

0 1 2 3 4 5 6
days of the week

Eng application
generated backup or copy

Eng machine
generated update

0

200

400

600

0 8 16 24

of

 s
es

si
on

s

hrs of the day

start
end

0

40

80

120

0 8 16 24
hrs of the day

0

25000

50000

0 8 16 24
hrs of the day

0

200

400

600

800

0 1 2 3 4 5 6

of

 s
es

si
on

s

days of the week

0

100

200

300

0 1 2 3 4 5 6
days of the week

0

40000

80000

120000

0 1 2 3 4 5 6
days of the week

Corp full day work Corp short content
generation

Corp supporting
metadata

Figure 3: Number of sessions that start or ends at a particular time. Number of session starts and ends in times of the day

(top) and session starts in days of the week (bottom). Showing only selected access patterns.

is easy. Examining a session’s total read size and write size
reveals their read-only or write-only nature. Implication 1:
Clients can consolidate sessions efficiently based only on the
read-write ratio.

Observation 2: The full-day work, content-viewing, and con-
tent-generating sessions all do ≈10MB of IO. This means
that a client cache of 10s of MB can fit the working set of a
day for most sessions. Given the growth of flash devices on
clients for caching, despite large-scale consolidation, clients
should easily cache a day’s worth of data for all users. In
such a scenario, most IO requests would be absorbed by the
cache, reducing network latency and bandwidth utilization,
and load on the server. Moreover, complex cache eviction
algorithms are unnecessary. Implication 2: Clients caches
can already fit an entire day’s IO.

Observation 3: The number of human-generated sessions
and supporting sessions peaks on Monday and decreases stead-
ily to 80% of the peak on Friday (Figure 3). This is true
for all human generated sessions, including the ones not
shown in Figure 3. There is considerable“slack” in the server
load during evenings, lunch times, and even during working
hours. This implies that the server can perform background
tasks such as consistency checks, maintenance, or compres-
sion/deduplication, at appropriate times during the week. A
simple count of active sessions can serve as an effective start
and stop signal. By computing the area under the curve for
session start times by days of the week, we estimate that
background tasks can squeeze out roughly one extra day’s
worth of processing without altering the peak demand on
the system. This is a 50% improvement over a setup which
performs background tasks only during weekends. In the
engineering trace, the application generated backup or copy
sessions seem to have been already designed this way. Im-
plication 3: Servers get an extra “day” for background tasks
by running them at appropriate times during week-days.

4.1.2 Application instances
Application instance access patterns reflects application be-
havior, facilitating application specific optimizations. We

used 16 features to describe application instances (Table 4).
The corporate trace has 138,723 application instances, and
the engineering trace has 741,319.

Table 4 provides quantitative descriptions and short names
for all the application instance access patterns. We derive
the names from examining the read-write ratio, IO size, and
file extensions accessed (Figures 4 and 5).

We see again the metadata background noise. The support-
ing metadata application instances account for the largest
fraction, and often do not even open a file.

There are many files without a file extension, a phenomenon
also observed in recent storage system snapshot studies [16].
We notice that file extensions turn out to be poor indicators
of application instance access patterns. This is not surpris-
ing because we separate access patterns based on read/write
properties. A user could either view a .doc or create a .doc.
The same application software has different read/write pat-
terns. This speaks to the strength of our multi-layer frame-
work. Aggregating IO by application instances gives clean
separation of patterns; while aggregating just by application
software or file extensions will not.

We also find it interesting that most file extensions are im-
mediately recognizable. This means that what people use
network storage systems for, i.e., the file extensions, remains
easily recognizable, even though how people use network
storage systems, i.e., the access patterns, is ever changing
and becoming more complex.

Observation 4: The small content viewing application and
content update application instances have <4KB total reads
per file open and access a few unique files many times. The
small read size and multiple reads from the same files means
that clients should prefetch and place the files in a cache op-
timized for random access (flash/SSD/memory). The trend
towards flash caches on clients should enable this transfer.

Application instances have bi-modal total IO size - either

49

very small or large. Thus, a simple cache management algo-
rithm suffices; we always keep the first 2 blocks of 4KB in
cache. If the application instance does more IO, it is likely
to have IO size in the 100KB-1MB range, so we evict it
from the cache. We should note that such a policy makes
sense even though we proposed earlier to cache all 11MB of
a typical day’s working set - 11MB of cache becomes a con-
cern when we have many consolidated clients. Implication
4: Clients should always cache the first few KB of IO per
file per application.

Observation 5: We see >50% sequential read and write ra-
tio for the content update applications instances (corporate)
and the content viewing applications instances for human-
generated content (both corporate and engineering). Di-
viding the total IO size by the number of file opens suggest
that these application instances are sequentially reading and
writing entire files for office productivity (.xls, .doc, .ppt,
.pdf, etc.) and multimedia applications.

This implies that the files associated with these applications
should be prefetched and delegated to the client. Prefetch-
ing means delivering the whole file to the client before the
whole file is requested. Delegation means giving a client
temporary, exclusive access to a file, with the client periodi-
cally synchronizing to server to ensure data durability. CIFS
does delegation using opportunistic locks, while NFSv4 has
a dedicated operation for delegation. Prefetching and dele-
gation of such files will improve read and write performance,
lower network traffic, and lighten server load.

The access patterns again offer a simple, threshold-based de-
cision algorithm. If an application instance does more than
10s of KB of sequential IO, and has no overwrite, then it
is likely to be a content viewing or update application in-
stance; such files are prefetched and delegated to the clients.
Implication 5: Clients can request file prefetch (read) and
delegation (write) based on only IO sequentiality.

Observation 6: Engineering applications with >50% sequen-
tial reads and >50% sequential writes are doing code com-
pile tasks. We know this from looking at the file exten-
sions in Figure 5. These compile processes show read se-
quentiality, write sequentiality, a significant overwrite ratio
and large number of metadata requests. They rely on the
server heavily for data accesses. We need more detailed
client side information to understand why client caches are
ineffective in this case. However, it is clear that the server
cache needs to prefetch the read files for these applications.
The high percentage of sequential reads and writes gives us
another threshold-based algorithm to identify these applica-
tions. Implication 6: Servers can identify compile tasks by
the presence of both sequential reads and writes; server has
to cache the output of these tasks.

4.2 Server Side Access Patterns
As mentioned in Section 3.2, we analyzed two kinds of server
side access units: files and deepest subtrees.

4.2.1 Files
File access patterns help storage server designers develop
per-file placement and optimization techniques. We used
25 features to describe files (Table 5). Note that some of

n.f.e. + xls

no files opened

n.f.e.
n.f.e. + xls

n.f.e. + xls
n.f.e. + doc

n.f.e.

n.f.e. + xls
pdf

n.f.e. + doc

pdf

n.f.e. + xls

n.f.e. + doc

n.f.e. + doc

n.f.e. + lnk

ini

others

n.f.e. + htm

n.f.e. + ppt

n.f.e. + ppt

n.f.e. + ppt

n.f.e. + html

n.f.e. + pdf

n.f.e. + pdf

n.f.e. + lnk

others

others
others

others

0

0.2

0.4

0.6

0.8

1

content viewing
app - app
generated

content

supporting
metadata

app generated
file updates

content viewing
app - human

generated
content

content update
app

Fr
ac

tio
n

of
 a

pp
lic

at
io

n
in

st
an

ce
s

Figure 4: File extensions for corporate application in-

stance access patterns. For each access pattern (column),

showing the fraction of the two most frequent file extensions that

are accessed together within a single application instance. “n.f.e.”

denotes files with “no file extension”.

h + o

no files opened

rnd

jpg

xls + n.t.e.

h + c

n.f.e.

n.f.e.

bmp

rnd

h + dbo

others

n.f.e. + xls

pdf

pst

h + d txt

n.f.e.

n.f.e. + tmp

others
others

txt

d + h

others

others

0

0.2

0.4

0.6

0.8

1

compilation app supporting
metadata

content update
app - small

content viewing
app - human

generated
content

content viewing
app - small

Fr
ac

tio
n

of
 a

pp
lic

at
io

n
in

st
an

ce
s

Figure 5: File extensions for engineering application in-

stance access patterns. For each access pattern (column),

showing the fraction of the two most frequent file extensions that

are accessed together within a single application instance. “n.f.e.”

denotes files with “no file extension”.

the features include different percentiles of a characteristic,
e.g., read request size as percentiles of all read requests. We
believe including different percentiles rather than just the
average would allow better separation of access patterns.
The corporate trace has 1,155,099 files, and the engineering
trace has 1,809,571.

In Table 5, we quantitative descriptions and short names for
all the file access patterns. Figures 6 and 7 give the most
common file extensions in each. We derived the names by
examining the read-write ratio and IO size. For the engineer-
ing trace, examining the file extensions also proved useful,
leading to labels such as“edit code and compile output”, and
“read only log/backup”.

50

(a). Descriptive features for each application instance
Total IO size Total metadata requests Repeated read ratio File opens
Read:write ratio by bytes Avg. time between IO requests Overwrite ratio Unique files opened
Total IO requests by bytes Read sequentiality Tree connects Directories accessed
Read:write ratio by requests Write sequentiality Unique trees accessed File extensions accessed

(b). Corporate application Content viewing app - Supporting App generated Content viewing app - Content update
instance access patterns app generated content metadata file updates human generated content app

% of all app instances 16% 56% 14% 8.8% 5.1%
Total IO 100 KB 0 1 KB 800 KB 3.5 MB

Read:write ratio 1:0 0:0 1:1 1:0 2:3
Metadata requests 130 5 50 130 500
Read sequentiality 5% - 0% 80% 50%
Write sequentiality - - 0% - 80%

Overwrite ratio - - 0% - 5%
File opens:files 19:4 0:0 10:4 20:4 60:11

Tree connect:Trees 2:2 0:0 2:2 2:2 2:2
Directories accessed 3 0 3 3 4

File extensions accessed 2 0 2 2 3

(c). Engineering application Compilation app Supporting Content update Content viewing app - Content viewing
instance access patterns metadata app - small human generated content app - small

% of all app instances 1.6% 93% 0.9% 2.0% 2.5%
Total IO 2 MB 0 2 KB 1 MB 3 KB

Read:write ratio 9:1 0:0 0:1 1:0 1:0
Metadata requests 400 1 14 40 15
Read sequentiality 50% - - 90% 0%
Write sequentiality 80% - 0% - -

Overwrite ratio 20% - 0% - -
File opens:files 145:75 0:0 3:1 5:4 2:1

Tree connect:Trees 1:1 0:0 1:1 1:1 1:1
Directories accessed 15 0 1 1 1

File extensions accessed 5 0 1 1 1

Table 4: Application instance access patterns. (a): Full list of descriptive features. (b) and (c): Short names and descriptions of

application instances in each access pattern; listing only the features that help separate the access patterns.

We see that there are groupings of files with similar exten-
sions. For example, in the corporate trace, the small random
read access patterns include many file extensions associated
with web browser caches. Also, multi-media files like .mp3

and .jpg congregate in the sequential read and write access
patterns. In the engineering trace, code libraries group un-
der the sequential write files, and read only log/backup files
contain file extensions .0 to .99. However, the most com-
mon file extensions in each trace still spread across many
access patterns, e.g., office productivity files in the corpo-
rate trace and code files in the engineering trace.

Observation 7: For files with >70% sequential reads or se-
quential writes, the repeated read and overwrite ratios are
close to zero. This implies that there is little benefit in
caching these files at the server. They should be prefetched
as a whole and delegated to the client. Again, the bimodal
IO sequentiality offers a simple algorithm for the server to
detect which files should be prefetched and delegated – if a
file has any sequential access, it is likely to have a high per-
centage of sequential access, therefore it should be prefetched
and delegated to the client. Future storage servers can sug-
gest such information to clients, leading to delegation re-
quests. Implication 7: Servers should delegate sequentially
accessed files to clients to improve IO performance.

Observation 8: In the engineering trace, only the edit code
and compile output files have a high % of repeated reads.
Those files should be delegated to the clients as well. The
repeated reads do not show up in the engineering application
instances, possibly because a compilation process launches
many child processes repeatedly reading the same files. Each

child process reads “fresh data,” even though the server sees
repeated reads. With larger memory or flash caches at
clients, we expect this behavior to drop. The working set
issues that lead to this scenario need to be examined. If the
repeated reads come from a single client, then the server can
suggest that the client cache the appropriate files.

We can again employ a threshold-based algorithm. Detect-
ing any repeated reads at the server signals that the file
should be delegated to the client. At worst, only the first
few reads will hit the server. Subsequent repeated reads are
stopped at the client. Implication 8: Servers should delegate
repeatedly read files to clients.

Observation 9: Almost all files are active (have opens, IO,
and metadata access) for only 1-2 hours over the entire trace
period, as indicated by the typical opens/read/write activity
of all access patterns. There are some regularly accessed
files, but they are so few that they do not affect the k-means
analysis. The lack of regular access for most files means that
there is room for the server to employ techniques to increase
capacity by doing compaction on idle files.

Common techniques include deduplication and compression.
The activity on these files indicate that the IO performance
impact should be small. Even if run constantly, compaction
has a low probability of affecting an active file. Since com-
mon libraries like gzip optimize for decompression [11], de-
compressing files at read time should have only slight perfor-
mance impact. Implication 9: Servers can use file idle time
to compress or deduplicate data to increase storage capacity.

51

(a). Descriptive features for each file
Number of hours with 1, 2-3, or 4 file opens Read sequentiality
Number of hours with 1-100KB, 100KB-1MB, or >1MB reads Write sequentiality
Number of hours with 1-100KB, 100KB-1MB, or >1MB writes Read:write ratio by bytes
Number of hours with 1, 2-3, or 4 metadata requests Repeated read ratio
Read request size - 25th, 50th, and 75th percentile of all requests Overwrite ratio
Write request size - 25th, 50th, and 75th percentile of all requests
Avg. time between IO requests - 25th, 50th, and 75th percentile of all request pairs

(b). Corporate file Metadata only Sequential write Sequential read Small random Smallest random Small random
access patterns write read read

% of all files 59% 4.0% 4.1% 4.7% 19% 9.2%
Opens activity 2hrs, 1 open 1hr, 2-3 opens 1hr, 2-3 opens 1hr, 2-3 opens 1hr, 1 open 1hr, 1 open
Read activity 0 0 1hr, 100KB-1MB 0 1hr, 1-100KB 1hr, 1-100KB
Write activity 0 1hr, 100KB-1MB 0 1hr, 1-100KB 0 0

Read request size - - 4-32KB - 2KB 32KB
Write request size - 60KB - 4-22KB - -
Read sequentiality - - 70% - 0% 0%
Write sequentiality - 80% - 0% - -

Read:write ratio 0:0 0:1 1:0 0:1 1:0 1:0

(c). Engineering file Metadata only Sequential write Small random Edit code & Sequential read Read-only
access patterns read compile output log/backup

% of all files 42% 1.9% 32% 7.3% 8.3% 8.1%
Opens activity 1hr, 1 open 1hr, 2-3 opens 1hr, 2-3 opens 1hr, 2-3 opens 1hr, 2-3 opens 2hrs, 2-3 opens
Read activity 0 0 1hr, 1-100KB 1hr, 1-100KB 1hr, 1-100KB 2hrs, 1-100KB
Write activity 0 1hr, >1MB 0 0 0 0

Read request size - - 3-4KB 4KB 8-16KB 1KB
Write request size - 64KB - - - -
Read sequentiality - - 0% 0% 70% 0%
Write sequentiality - 90% - - - -
Repeated read ratio - - 0% 50% 0% 0%

Read:write ratio 0:0 0:1 1:0 1:0 1:0 1:0

Table 5: File access patterns. (a): Full list of descriptive features. (b) and (c): Short names and descriptions of files in each access

pattern; listing only the features that help separate the access patterns.

no file ext. no file ext.
xls

no file ext.

xml
no file ext.

z xls
mp3

tmp

html

xls
xls mp3

jpg

doc

gif

doc

ico
pdf

doc

xls

zip

ppt

tmp
doc

pdf

others

htm

tmp

jpg

tmp

ppt

xls

html

xml

jpg

no file ext.

doc

others

others
others

others

swf

others

0

0.2

0.4

0.6

0.8

1

metadata
only files

seq write
files

seq read
files

small
random

write files

smallest
random

read files

small
random

read files

Fr
ac

tio
n

of
 fi

le
s

Figure 6: File extensions for corporate files. Fraction of

file extensions in each file access pattern.

Observation 10: All files have either all random access or
>70% sequential access. The small random read and write
files in both traces can benefit from being placed on media
with high random access performance, such as solid state
drives (SSDs). Files with a high percentage of sequential
access can reside on traditional hard disk drives (HDDs),
which already optimize for sequential access. The bimodal
IO sequentiality offers yet another threshold-based place-
ment algorithm – if a file has any sequential access, it is
likely to have a high percentage of sequential access; there-
fore place it on HDDs. Otherwise, place it on SSDs. We

no file ext.
jpg

no file ext. h c

0-99
o

mp3

h
c

o

bcq

bcf

dll

c

bcq

jpg

no file ext.

d
jar

html

d

h

others

c
wma

d

o

no file ext.

html doc
gif

others

html

h

others others
others

eth

others

0

0.2

0.4

0.6

0.8

1

idle, only
metadata

seq write
files

small
random

read files

edit code
& compile

output

seq read
files

read only
log/backup

files

Fr
ac

tio
n

of
 fi

le
s

Figure 7: File extensions for engineering files. Fraction

of file extensions in each file access pattern.

note that there are more randomly accessed files than se-
quentially accessed files. Even though sequential files tend
to be larger, we still need to do a working set analysis to
determine the right size of server SSDs for each use case.
Implication 10: Servers can select the best storage medium
for each file based only on access sequentiality.

4.2.2 Deepest subtrees
Deepest subtree access patterns help storage server design-
ers develop per-directory policies. We used 40 features to
describe deepest subtrees (Table 6). Some of the features

52

no file ext.
xls

jpg
no file ext. no file ext.

no file ext.

tmp

no file ext.

xls

z

tmp

xml

doc

xml

mp3

xls

xls

html

xls

html

pdf

ico

pdf

xls

xml

msg

swf

xml

mp3

doc

others

gif

no file ext.

jpg

doc

gif

others

doc

others
jpg

htm

zip

others

zip

others

others

0

0.2

0.4

0.6

0.8

1

temp dirs
for real

data

client
cacheable

dirs

mix read
dirs,

mostly seq

metadata
only dirs

mix write
dirs,

mostly seq

small
random
read dirs

Fr
ac

tio
n

of
 fi

le
s

Figure 8: File extensions for corporate deepest subtrees.

Fraction of file extensions in deepest subtree access patterns.

no file ext. no file ext. c
no file ext.

jpg o

bcf h
h

c
tmp

jpg
o c

bcq

o
no file ext.

tmpd bcq

no file ext.

d jar

no file ext.
c

html

d

jpg ryy

d
html

others

others

html dll

dbo
h

others others

obj
eth

othersothers

0

0.2

0.4

0.6

0.8

1

metadata
only dir

small
random
read dir

client
cacheable

dirs

mix read
dirs,

mostly seq

seq write
dirs

temp dirs
for real

data

Fr
ac

tio
n

of
 fi

le
s

Figure 9: File extensions for engineering deepest sub-

trees. Fraction of file extensions in deepest subtree access pat-

terns.

include different percentiles of a characteristic, e.g. per file
read sequentiality as percentiles of all files in a directory.
Including different percentiles rather than just the average
allows better separation of access patterns. The corporate
trace has 117,640 deepest subtrees, and the engineering trace
has 161,858. We use “directories” and “deepest subtrees” in-
terchangeably.

In Table 6, we provide quantitative descriptions and short
names for all the deepest subtree access patterns. We derive
the names using two types of information. First, we analyze
the file extensions in each subtree access pattern (Figures 8
and 9). Second, we examine how many files of each file ac-
cess patterns are within each subtree pattern (Figures 10).
For brevity, we show only the graph for corporate deepest
subtrees. The graph for the engineering deepest subtrees
conveys the same information with regard to our design in-
sights.

For example, the “random read” and “client cacheable” la-
bels come from looking at the IO patterns. “Temporary
directories” accounted for the .tmp files in those directories.
“Mix read” and “mix write” directories considered the pres-
ence of both sequential and randomly accessed files in those
directories.

The metadata background noise remains visible at the sub-
tree layer. The spread of file extensions is similar to that
for file access patterns – some file extensions congregate and
others spread evenly. Interestingly, some subtrees have a
large fraction of metadata-only files that do not affect the
descriptions of those subtrees.

Some subtrees contain only files of a single access pattern
(e.g., small random read subtrees in Figures 10). There, we
can apply the design insights from the file access patterns
to the entire subtree. For example, the small random read
subtrees can reside on SSDs. Since there are more files than
subtrees, per-subtree policies can lower the amount of policy
information kept at the server.

In contrast, the mix read and mix write directories contain
both sequential and randomly accessed files. Those subtrees
need per-file policies: Place the sequentially accessed files on
HDDs and the randomly accessed files on SSDs. Soft links
to files can preserve the user-facing directory organization,
while allowing the server optimize per-file placement. The
server should automatically decide when to apply per-file or
per-subtree policies.

Observation 11: Directories with sequentially accessed files
almost always contain randomly accessed files also. Con-
versely, some directories with randomly access files will not
contain sequentially accessed files. Thus, we can default all
subtrees to per-subtree policies. Concurrently, we track the
IO sequentiality per subtree. If the sequentiality is above
some threshold, then the subtree switches to per-file poli-
cies. Implication 11: Servers can change from per-directory
placement policy (default) to per-file policy upon seeing any
sequential IO to any files in a directory.

Observation 12: The client cacheable subtrees and temporary
subtrees aggregate files with repeated reads or overwrites.
Additional computation showed that the repeated reads and
overwrites almost always come from a single client. Thus, it
is possible for the entire directory to be prefetched and del-
egated to the client. Delegating entire directories can pre-
empt all accesses that are local to a directory, but consumes
client cache space. We need to understand the tradeoffs
through a more in-depth working set and temporal locality
analysis at both the file and deepest subtree levels. Impli-
cation 12: Servers can delegate repeated read and overwrite
directories entirely to clients, tradeoffs permitting.

4.3 Access Pattern Evolutions Over Time
We want to know if the access patterns are restricted to
our particular tracing period or if they persist across time.
Only if the design insights remain relevant across time can
we rationalize their existence in similar use cases.

We do not have enough traces to generalize beyond our mon-
itoring period. We investigate the reverse problem - if we

53

(a). Descriptive features for each subtree
Number of hours with 1, 2-3, or 4 file opens Read:write ratio - 25th, 50th, and 75th percentile of files
Number of hours with 1-100KB, 100KB-1MB, or >1MB reads Repeated read ratio - 25th, 50th, and 75th percentile of files
Number of hours with 1-100KB, 100KB-1MB, or >1MB writes Overwrite ratio - 25th, 50th, and 75th percentile of files
Number of hours with 1, 2-3, or 4 metadata requests Read sequentiality - aggregated across all files

Read request size - 25th, 50th, and 75th percentile of all requests Write sequentiality - aggregated across all files
Write request size - 25th, 50th, and 75th percentile of all requests Read:write ratio - aggregated across all files
Avg. time between IO requests - 25th, 50th, and 75th percentile of all request pairs Repeated read ratio - aggregated across all files
Read sequentiality - 25th, 50th, and 75th percentile of files in the subtree Overwrite ratio - aggregated across all files
Write sequentiality - 25th, 50th, and 75th percentile of files in the subtree

(b). Corp. subtree Temp dirs for Client cache- Mix read dirs, Metadata only Mix write dirs, Small random
access patterns real data able dirs mostly sequential dirs mostly sequential read dirs
% of all subtrees 2.3% 4.1% 5.6% 64% 3.5% 21%

Opens activity 3hrs, >4 opens 3hr, 1 open 2hr, 1 open 2hr, 1 open 1hr, >4 opens 1hr, >4 opens
Read activity 3hrs, 1-100KB 2hrs, 1-100KB 1hr, 1-100KB 0 0 1hr, 1-100KB
Write activity 2hrs, 0.1-1MB 0 0 0 1hr, >1MB 0

Read request size 4KB 4-10KB 4-32KB - - 1-8KB
Write request size 4KB - - - 64KB -
Read sequentiality 10-30% 0% 50-70% - - 0%
Write sequentiality 50-70% - - - 70-80% -
Repeat read ratio 20-50% 50% 0% - - 0%

Overwrite ratio 30-70% - - - 0% -
Read:write ratio 1:0 to 0:1 1:0 1:0 0:0 0:1 1:0

(c). Eng. subtree Metadata only Small random Client cache- Mixed read dirs, Sequential Temp dirs for
access patterns dirs read dirs able dirs mostly sequential write dirs real data
% of all subtrees 59% 25% 6.1% 7.1% 1.9% 1.3%

Opens activity 1hr, 2-3 opens 1hr, >4 opens 1hr, >4 opens 1hr, >4 opens 1hr, >4 opens 3hrs, >4 opens
Read activity 0 1hr, 1-100KB 1hr, 1-100KB 1hr, 0.1-1MB 0 3hrs, 1-100KB
Write activity 0 0 0 0 1hr, 0.1-1MB 1hr, 1-100KB

Read request size - 1-4KB 2-4KB 8-10KB - 4-32KB
Write request size - - - - 32-60KB 4-60KB
Read sequentiality - 0% 0% 40-70% - 10-65%
Write sequentiality - - - - 70-90% 60-80%
Repeat read ratio - 0% 50-60% 0% - 0-40%

Overwrite ratio - - - - 0% 0-30%
Read:write ratio 0:0 1:0 1:0 1:0 0:1 1:0 to 0:1

Table 6: Deepest subtree access patterns. (a): Full list of descriptive features. (b) and (c): Short names and descriptions of

subtrees in each access pattern; listing only the features that help separate access patterns.

had to analyze traces from only a subset of our tracing pe-
riod, how would our results differ? We divided our traces
into weeks and repeated the analysis for each week. For
brevity, we present only the results for weekly analysis of
corporate application instances and files. These two layers
have yielded the most interesting design insights and they
highlight separate considerations at the client and server.

Figure 11 shows the result for files. All the large access
patterns remain steady across the weeks. However, the ac-
cess pattern corresponding to the smallest number of files,
the small random write files, comes and goes week to week.
There are exactly two, temporary, previously unseen access
patterns that are very similar to the small random files. The
peaks in the metadata only files correspond to weeks that
contain U.S. federal holidays or weeks immediately preced-
ing a holiday long weekend. Furthermore, the numerical val-
ues of the descriptive features for each access pattern vary
in a moderate range. For example, the write sequentiality
of the sequentiality write files ranges from 50% to 90%.

Figure 12 shows the result for application instances. We see
no new access patterns, and the fractional weight of each ac-
cess pattern remains nearly constant, despite holidays. Fur-
thermore, the numerical values of descriptive features also
remain nearly constant. For example, the write sequentiality
of the content update applications varies in a narrow range
from 80% to 85%.

Thus, if we had done our analysis on just a week’s traces, we
would have gotten nearly identical results for application in-
stances, and qualitatively similar result for files. We believe
that the difference comes from the limited duration of client
sessions and application instances, versus the long-term per-
sistence of files and subtrees.

Based on our results, we are confident that the access pat-
terns are not restricted just to our particular trace period.
Future storage systems should continuously monitor the ac-
cess patterns at all levels, automatically adjusting policies
as needed, and notify designers of previously unseen access
patterns.

We should always be cautious when generalizing access pat-
terns from one use case to another. For use cases with the
same applications running on the same OS file API, we ex-
pect to see the same application instance access patterns.
Session access patterns such as daily work sessions are also
likely to be general. For the server side access patterns, we
expect the files and subtrees with large fractional weights to
appear in other use cases.

5. ARCHITECTURAL IMPLICATIONS
Section 4 offered many specific optimizations for placement,
caching, delegation, and consolidation decisions. We com-
bine the insights here to speculate on the architecture of
future enterprise storage systems.

54

0

10000

20000

30000

40000

0 1 2 3 4 5

of

 fi
le

s

file access patterns

0

10000

20000

30000

0 1 2 3 4 5
file access patterns

0

10000

20000

30000

0 1 2 3 4 5
file access patterns

0

200000

400000

600000

800000

0 1 2 3 4 5
file access patterns

0

10000

20000

30000

40000

0 1 2 3 4 5
file access patterns

0

50000

100000

150000

200000

0 1 2 3 4 5
file access patterns

Temp dirs for real data Client cacheable dirs Mix read dirs, mostly seq Metadata only dirs Mix write dirs, mostly seq Small random read dirs

Figure 10: Corporate file access patterns within each deepest subtree. For each deepest subtree access pattern (i.e., each

graph), showing the number of files belonging to each file access pattern that belongs to subtrees in the subtree access pattern. Corporate

file access pattern indices: 0. metadata only files; 1. sequential write files; 2. sequential read files; 3. small random write files; 4. small

random read files; 5. less small random read files.

0.01

0.10

1.00

0 1 2 3 4 5 6 7

Fr
ac

tio
n

of
 a

ll
fil

es

week #

metadata only files
sequential write files
sequential read files
small random write files
smallest random read files
small random read files
medium partly seq write
small read write

Figure 11: Corporate file access patterns over 8 weeks.

All patterns remain (hollow markers), but the fractional weight

of each changes greatly between weeks. Some small patterns tem-

porarily appear and disappear (solid markers).

0.01

0.10

1.00

0 1 2 3 4 5 6 7

Fr
ac

tio
n

of
 a

ll
ap

p
in

st
an

ce
s

week #

supporting metadata

app generated file updates

content update app

content viewing app - app
generated content
content viewing app - human
generated content

Figure 12: Corporate application instance access pat-

terns over 8 weeks. All patterns remain with near constant

fractional weight. No new patterns appear.

We see a clear separation of roles for clients and servers.
The client design can target high IO performance by a com-
bination of efficient delegation, prefetching and caching of
the appropriate data. The servers should focus on increas-
ing their aggregated efficiency across clients: collaboration
with clients (on caching, delegation, etc.) and exploiting
user patterns to schedule background tasks. Automating
background tasks such as offline data deduplication deliv-
ers capacity savings in a timely and hassle-free fashion, i.e.,
without system downtime or explicit scheduling. Regard-
ing caching at the server, we observe that very few access
patterns actually leverage the server’s buffer cache for data
accesses. Design insights 4-6, 8 and 12 indicate a heavy role
for the client cache and Design insight 7 suggests how not
to use the server buffer cache - caching metadata only and
acting as a warm/backup cache for clients would result in
lower latencies for many access patterns.

We also see simple ways to take advantage of new storage
media such as SSDs. The clear identification of sequen-
tial and random access file patterns enables efficient device-

specific data placement algorithms (Design insights 10 and
11). Also, the background metadata noise seen at all lev-
els suggests that storage servers should both optimize for
metadata accesses and redesign client-server interactions to
decrease the metadata chatter. Depending on the growth of
metadata and the performance requirements, we also need
to consider placing metadata on low latency, non-volatile
media like flash or SSDs.

Furthermore, we believe that storage systems should intro-
duce many monitoring points to dynamically adjust the deci-
sion thresholds of placement, caching, or consolidation poli-
cies. We need to monitor both clients and servers. For
example, when repeated read and overwrite files have been
properly delegated to clients, the server would no longer see
files with such access patterns. Without monitoring points
at the clients, we would not be able to quantify the file del-
egation benefits. Storage systems should make extensible
tracing APIs to expedite the collection of long-term future
traces. This will facilitate future work similar to ours.

6. CONCLUSIONS AND FUTURE WORK
We must address the storage technology trends toward ever-
increasing scale, heterogeneity, and consolidation. Current
storage design paradigms that rely on existing trace anal-
ysis methods are ill equipped to meet the emerging chal-
lenges because they are unidimensional, focus only on the
storage server, and are subject to designer bias. We showed
that a multi-dimensional, multi-layered trace-driven design
methodology leads to more objective design points with highly
targeted optimizations at both storage clients and servers.
Using our corporate and engineering use cases, we present
a number of insights that informs future designs. We de-
scribed in some detail the access patterns we observed, and
we encourage fellow storage system designers to extract fur-
ther insights from our observations.

Future work includes exploring the dynamics of changing
working sets and access sequences, with the goal of anticipat-
ing data accesses before they happen. Another worthwhile
analysis is to look for optimization opportunities across clients;
this requires collecting traces at different clients, instead of
only at the server. Also, we would like to explore oppor-
tunities for deduplication, compression, or data placement.
Doing so requires extending our analysis from data move-
ment patterns to also include data content patterns. Fur-
thermore, we would like to perform on-line analysis in live
storage systems to enable dynamic feedback on placement
and optimization decisions. In addition, it would be useful

55

to build tools to synthesize the access patterns, to enable
designers to evaluate the optimizations we proposed here.

We believe that storage system designers face an increasing
challenge to anticipate access patterns. Our paper builds the
case that system designers can longer accurately anticipate
access patterns using intuition only. We believe that the
corporate and engineering traces from our corporate head-
quarters would have similar use cases at other traditional
and high-tech businesses. Other use cases would require us
to perform the same trace collection and analysis process to
extract the same kind of “ground truth”. We also need sim-
ilar studies at regular intervals to track the evolving use of
storage system. We hope that this paper contributes to an
objective and principled design approach targeting rapidly
changing data access patterns.

NetApp, the NetApp logo, and Go further, faster are trade-
marks or registered trademarks of NetApp, Inc. in the United
States and/or other countries.

7. REFERENCES
[1] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R.

Lorch. A Five-Year Study of File-System Metadata. In
FAST 2007.

[2] E. Alpaydin. Introduction to Machine Learning. MIT
Press, Cambridge, Massachusetts, 2004.

[3] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.
Shirriff, and J. K. Ousterhout. Measurements of a
distributed file system. In SOSP 1991.

[4] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and
H. Andersen. Fingerprinting the datacenter:
automated classification of performance crises. In
EuroSys 2010.

[5] Common Internet File System Technical Reference.
Storage Network Industry Association, 2002.

[6] IDC Whitepaper: The economics of Virtualization.
www.vmware.com/files/pdf/

Virtualization-application-based-cost-model-WP-EN.

pdf.

[7] J. R. Douceur and W. J. Bolosky. A Large-Scale Study
of File-System Contents. In SIGMETRICS 1999.

[8] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer.
Passive NFS Tracing of Email and Research
Workloads. In FAST 2003.

[9] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener,
A. Fox, M. Jordan, and D. Patterson. Predicting
Multiple Metrics for Queries: Better Decisions

Enabled by Machine Learning. In ICDE 2009.

[10] S. Gribble, G. S. Manku, E. Brewer, T. J. Gibson, and
E. L. Miller. Self-Similarity in File Systems:
Measurement and Applications. In SIGMETRICS
1998.

[11] The gzip algorithm.
http://www.gzip.org/algorithm.txt.

[12] IDC Report: Worldwide File-Based Storage 2010-2014
Forecast Update. http:
//www.idc.com/getdoc.jsp?containerId=226267.

[13] S. Kavalanekar, B. L. Worthington, Q. Zhang, and
V. Sharda. Characterization of storage workload traces
from production Windows Servers. In IISWC 2008.

[14] Open Source Clustering Software - C Clustering

Library. http://bonsai.hgc.jp/~mdehoon/software/
cluster/software.htm, 2010.

[15] A. Leung, S. Pasupathy, G. Goodson, and E. Miller.
Measurement and analysis of large-scale network file
system workloads. In USENIX ATC 2008.

[16] D. T. Meyer and W. J. Bolosky. A Study of Practical
Deduplication. In FAST 2010.

[17] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A.
Kunze, M. Kupfer, and J. G. Thompson. A
trace-driven analysis of the Unix 4.2 BSD file system.
In SOSP 1985.

[18] K. K. Ramakrishnan, P. Biswas, and R. Karedla.
Analysis of file I/O traces in commercial computing
environments. In SIGMETRICS 1992.

[19] D. Roselli, J. Lorch, and T. Anderson. A comparison
of file system workloads. In USENIX 2000.

[20] I. Stoica. A Berkeley View of Big Data: Algorithms,
Machines and People. UC Berkeley EECS Annual
Research Symposium, 2011.

[21] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song.
Design and evaluation of a real-time URL spam
filtering service. In IEEE Symposium on Security and
Privacy 2011.

[22] R. Villars. The Migration to Converged IT: What it
Means for Infrastructure, Applications, and the IT
Organization. IDC Directions Conference 2011.

[23] VMware Whitepaper: Server Consolidation and
Containment.
www.vmware.com/pdf/server_consolidation.pdf.

[24] W. Vogels. File system usage in Windows NT 4.0. In
SOSP 1999.

[25] M. Zhou and A. J. Smith. Analysis of Personal
Computer Workloads. In MASCOTS 1999.

56

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

