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ABSTRACT
Compression enables us to shift resource bottlenecks be-
tween IO and CPU. In modern datacenters, where energy
efficiency is a growing concern, the benefits of using com-
pression have not been completely exploited. As MapRe-
duce represents a common computation framework for Inter-
net datacenters, we develop a decision algorithm that helps
MapReduce users identify when and where to use compres-
sion. For some jobs, using compression gives energy savings
of up to 60%. We believe our findings will provide signficant
impact on improving datacenter energy efficiency.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications

General Terms
Measurement, Performance, Design

Keywords
MapReduce, Hadoop, Compression

1. INTRODUCTION
Internet datacenters increasingly rely on frameworks such

as MapReduce for business critical computations. MapRe-
duce hides the complexity of managing a cluster of com-
modity machines. Users view a simple programming inter-
face, but must still optimize cluster configurations. One set
of configurations controls compression on a per-job basis.
Compression shifts the computation load from IO to CPU.
For data-intensive workloads that spend considerable time
doing IO, using compression potentially improves both time
and energy efficiency. The compression idea already received
much attention in prior work on wireless encodings, where
radio transmission represents a similar IO energy bottleneck.
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In MapReduce and datacenters, current uses of compres-
sion remain ad-hoc. The recent Yahoo! petasort imple-
mentation used MapReduce with compression [7]. From our
RAD Lab industry partners, we are aware that some compa-
nies use compression almost always, while other companies
never use compression. We believe that it is suboptimal to
have a blanket rule to always or never use compression. The
decision about whether compression is beneficial depends on
job-specific data properties and IO patterns.

An effective per-job compression decision algorithm pro-
vides another tool for datacenter operators to reason about
workloads and improve energy efficiency. We perform a sys-
tematic evaluation of the compute vs. IO tradeoffs in us-
ing compression for MapReduce. For read-heavy text data,
compression provides 35-60% energy savings. For highly
compressible data, the savings are even higher. The data
properties and IO patterns for each job determine the amount
of savings. Our key technical contribution is a decision al-
gorithm that answers the “to compress or not to compress”
question per job. The algorithm facilitates a selective com-
pression policy for multi-job workloads, and we present some
initial thoughts on workload driven evaluations.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of compression mechanisms in MapRe-
duce and related work on energy efficiency. Section 3 out-
lines the parameters we consider, our energy measurement
method and cluster setup. Section 4 analyzes our results and
quantifies compute vs. IO tradeoffs. Section 5 presents our
compression decision algorithm. Section 6 highlights topics
for future work.

2. BACKGROUND

2.1 Compression in MapReduce
At its core, MapReduce has two user-defined functions.

The Map function takes in a key-value pair, and generates
a set of intermediate key-value pairs. The intermediate key-
value pairs are shuffled over the network to Reduce nodes.
The Reduce function emits a final set of key-value pairs. We
use the Hadoop open source implementation of MapReduce.
For Hadoop, the input and output data reside in the Hadoop
distributed file system (HDFS). The intermediate key-value
pairs stage to local disks before being shuffled.

Compression offers a mechanism to decrease IO demands
(compressed data has smaller size) through increased CPU
work (required for compression and decompression). Hadoop
exposes various configuration settings to control three as-
pects of compression.



What to compress: Hadoop allows users to compress out-
put data, intermediate data, or both. Hadoop checks whether
input data is in a compressed format and decompresses the
data as needed.

Compression codec: We use Hadoop 0.18.2, which includes
two lossless codecs. The default codec is gzip, a combi-
nation of the Lempel-Ziv 1977 (LZ77) algorithm and Huff-
man encoding. The other codec implements the Lempel-Ziv-
Oberhumer (LZO) algorithm, a variant of LZ77 optimized
for decompression speed.

Compression unit : Hadoop allows both per-record and
per-block compression. Thus, the record or block size af-
fects the compressibility of the data. We focus on per-block
compression by comparing the effect of various block sizes
on performance.

2.2 Related Work
Our study builds on prior work in energy benchmarking

as well as MapReduce energy evaluation.
Power proportionality has been proposed as a worthy dat-

acenter design goal [4]. Power proportionality differs from
energy efficiency in that proportionality implies low energy
consumption at low system utilization, and efficiency implies
low energy usage to complete a certain compute job. Non-
power proportional machines have small dynamic power ranges.
This makes energy efficiency equivalent to time efficiency,
since energy is the product of power and time. We will see
this equivalence later in our results.

JouleSort is a software benchmark that measures the en-
ergy required to perform an external sort [8]. Recent work in
MapReduce energy efficiency used the JouleSort benchmark
for clusters of tens of machines sorting 10-100GB data [5,
6]. Unrelated to energy efficiency, Yahoo! used Hadoop to
sort petabyte scale data in reasonable time [7]. The Yahoo!
petasort effort used LZO compression for intermediate data.

In [6], the authors seek to improve HDFS energy efficiency
by “sleeping” nodes during periods of low load. The eval-
uation focuses only on default Hadoop configurations and
assumes sleeping nodes have zero power. The zero power
assumption would not be true if the nodes still participate
in data replication. This work offered us many lessons in
developing our methodology.

A direct predecessor to our work, [5] explores MapReduce
energy consumption for a variety of jobs, stressing each part
of the MapReduce data path. It examined design choices
including cluster size, configuration parameters, and input
sizes, to name a few. We use several MapReduce jobs from
[5] for evaluating compression.

3. METHODOLOGY
Hadoop is a complex system with many parameters. A

production system imposes additional complexities that make
a full scan of the parameter space impractical. Our hypoth-
esis is that compression would yield the greatest benefit for
highly compressible data, and lead to considerably smaller
performance variation for all data. For uncompressible data,
compression would create significant overhead. A priori, we
have no estimation of what compressibility level would re-
verse the tradeoff between IO and CPU, or whether any
non-default parameter values would affect the tradeoff. We
simplify the problem by focusing on key parameters and a
few demonstrative Hadoop jobs.

3.1 MapReduce Jobs
We look at four Hadoop jobs - HDFS write, HDFS read,

shuffle, and sort. The first three jobs stress one part of
the Hadoop IO pipeline at a time. Sort represents a 1-1-1
combination of the three different IO stages. We implement
these jobs by modifying the randomwriter and randomtext-

writer examples that are pre-packaged with every Hadoop
distribution.

Due to the inability to finely control data compressibility,
we generate data that represents various compression ratios.
Note that less compressible data results in higher compres-
sion ratios, with a compression ratio of 1 representing un-
compressible data. We used four algorithms to generate our
data:

1. randomwriter generates random bits in terasort for-
mat. It has gzip block compression ratio of roughly 1.1, i.e.,
the ratio between compressed data size and uncompressed
data size is 1.1. The compression ratio is greater than 1 due
to gzip prefix tree overhead.

2. randomtextwriter samples from a random selection of
1000 words from the Linux dictionary. It has gzip block com-
pression ratio of roughly 0.3. The gridmix pseudo-benchmark
uses this job. The algorithm favors infrequent words, and
the small words list gives an artificially low compression ra-
tio.

3. randomshakespeare samples from the English Wikipedia
entry for “Shakespeare”. It represents English text more
accurately than randomtextwriter, and gives a gzip block
compression ratio of roughly 0.4. We used the March 2010
snapshot for “Shakespeare”.

4. repeatshakespeare repeats the English Wikipedia en-
try for “Shakespeare” in the correct word order. It repre-
sents highly compressible data. Gzip picks up the repeated
common substrings, with the block compression ratio being
roughly 0.004.

For comparison, twitter data feeds in JSON format have
0.2 compression ratio. Wind farm power logs have 0.15 com-
pression ratio. Hadoop code has roughly 0.4 compression
ratio. Multimedia formats like MP3 and JPEG have 0.8-0.9
compression ratio. Our four data types cover a superset of
the compression ratio range for structured textual and nu-
merical logs, natural language text, source code, and multi-
media data.

3.2 MapReduce Configuration Parameters
Key MapReduce configuration parameters include HDFS

block size, since Hadoop uses per block compression by de-
fault. Memory allocation is another factor, since gzip stores
the compression prefix tree in memory. The number of maps
and reduces is also a factor, especially for sort and shuf-
fle. More data per map decreases parallelism, since Hadoop
stores all intermediate key-value pairs before compressing
the intermediate data. More data per reduce amplify net-
work bottlenecks and emphasize compression benefits.

Clearly, it is impractical to sweep the entire parameter
space. Our strategy is to look at the full combination of in-
put types and job types for only default Hadoop parameters.
For non-default parameter values, we look at one input type
only. This method allows us to identify which configurations
are most important, and which configurations are secondary
considerations.

We defer several topics for future work: e.g., the choice
of compression codecs; jobs with input-shuffle-output data



ratios that are not 1-0-0, 0-1-0, 0-0-1, or 1-1-1; the impact
of different compute functions for map and reduce (our map
and reduce functions are essentially identify functions); and
design considerations for multi-job or multi-tenant work-
loads. Section 5.2 offers a glimpse of the more expanded
problem space.

3.3 Energy Measurement
We use a Brand Electronics Model 21-1850/CI power me-

ter, with 1W power resolution and 1Hz sampling rate. We
measure energy at the wall power socket. This captures the
holistic system performance, including any idle components
drawing wasted power.

We measure energy consumption for MapReduce workers
only. Any fixed, per-cluster overhead such as the master or
the network switch would be amortized across a large clus-
ter. Also, for a homogenous cluster not optimized for rack
locality, the behavior of one worker is statistically identical
to the behavior of other workers. Thus, we monitor only
one worker, and capture the variation between workers via
repeated measurements.

For each configuration, we take 10 repeated readings. Sin-
gle measurements are useless for comparisons, since Hadoop
performance variation can be quite large [5]. We show mea-
surement averages and 95% confidence intervals assuming a
Gaussian (normal) distribution of the data. This assumption
is statistically valid as follows. The Central Limit Theorem
states that the sample average of any statistical distribu-
tion would converge to a Gaussian distribution around the
mean. Thus, each measurement would be a sample of the ac-
tual performance distribution, and the sample average would
have a Gaussian distribution around the mean performance.

For our energy measurements, we use Hadoop jobs to read,
write, shuffle, or sort 10GB of data.

3.4 Cluster Setup
We use a 10-node cluster. Each node is a Sun Microsys-

tems X2200 M22 machine running Linux 2.6.26-1-xen-amd64,
with two dual-core AMD Opteron Processor at 2.2GHz, 3.80GB
RAM, 250GB SATA Drive, and 1Gbps Ethernet through a
single switch. Each machine consumes roughly 150W fully
idle power, 250W fully active power [2], and 190W running
Hadoop at idle, i.e., no active Hadoop jobs.

Although a 10-node cluster appears small for our experi-
ments, a survey of production clusters suggests that around
70% of MapReduce clusters contain fewer than 50 machines
[1]. Thus, our findings on 10 machines easily generalize to
clusters at that scale.

We use Hadoop 0.18.2 with no virtualization. We decided
against newer Hadoop distributions to ensure data compa-
rability with our early experiments and the results in [5].
Unless otherwise noted, we use default configuration param-
eters for Hadoop.

We run experiments in a controlled environment. We use
a shared cluster and closely monitor the CPU, disk, and
network load during our experiments. When we detect any
activity not due to Hadoop, we stop data collection and
repeat the measurement at a later time.

4. RESULTS
We conducted several experiments to understand the time

and energy efficiency impact of compression under various
cluster configurations and input datasets.

4.1 Default Hadoop Configurations
Figure 1 shows the effect of using compression for the

default Hadoop configuration. We used data generated by
the randomshakespeare algorithm. Compression has a small
cost for HDFS write and sort, a small benefit for HDFS read,
and a significant cost for shuffle.

Both HDFS write and sort involve transmitting a signifi-
cant amount of data over the network. Thus, the additional
work of compression balances out the benefit of transmit-
ting less data. For HDFS read, the benefit of reading less
data outweighs the relatively small cost of decompression.
For shuffle, transmission over the network begins only af-
ter each machine compresses all of its intermediate data.
The additional work of compression outweighs the benefit
of transmitting less data. Also, for sort, doing compression
for only the shuffle step impose a smaller cost. We expect
these tradeoffs to change for data with different compress-
ibility.

The machines in our cluster are not power proportional.
Thus, power consumption remains largely fixed (note the
truncated vertical axis). For these machines, the duration
and energy graphs are near identical, since the power is near
constant and energy is the product of power and time. Thus,
for subsequent results, we show the energy graph only.

4.2 Data Compressibility
Figure 2 shows the effect of different data compressibil-

ity levels. We organized the data by decreasing compress-
ibility, i.e., repeatshakespeare, followed by randomtext-

writer, randomshakespeare, and randomwriter. For jobs
that use compression, decreasing compressibility leads to in-
creased energy (and time). For uncompressible data, com-
pression represents wasted work.

The compressibility of data determines whether compres-
sion is worthwhile. For repeatshakespeare, compression
consistently yields benefits of 50-70%. For randomtext-

writer, compression has a 60% benefit for read, 10% ben-
efit for sort, 20% cost for write, and 90% cost for shuffle.
For randomshakespeare, compression has a 35% benefit for
read, and a clear disadvantage for other IO patterns. For
randomwriter, compression has a clear disadvantage for all
jobs. Clearly, a blanket policy on compression does not make
sense. For read heavy jobs and jobs with highly compressible
data, compression brings considerable benefits.

The data for randomtextwriter is noteworthy as compres-
sion results in relatively small cost or benefit for all stages of
the IO pipeline except shuffle. This suggests that a compres-
sion ratio of roughly 0.3 is an inflexion point. Compression
improves energy efficiency for data with a compression ratio
much less than 0.3, and always hurts for data with higher
compression ratios. The further away from the inflexion
point, the greater the benefit or cost.

Production data in binary, numeric, text, and image for-
mats have different compressibility. Per-job compression de-
cisions must account for this variation.

4.3 Miscellaneous Configuration Parameters
Figure 3 shows the effect of different HDFS block sizes and

memory allocations. The default HDFS block size is 64MB.
We increase it to twice the default value. For memory alloca-
tions, we configure the io.sort.mb, fs.inmemory.size.mb,
mapred.child.java.opts parameters in hadoop-site.xml.
The default for these parameters are respectively 100MB,



75MB, and 200MB. For the large memory configurations,
we double the default values for all three parameters.

Figure 3 shows that different block sizes and memory al-
locations have minimal impact on the compression tradeoff.
There is some variability between the configurations, but the
compression tradeoffs are preserved.

Figure 3 also shows that using compression leads to smaller
variability. Jobs that use compression have much smaller
95% confidence intervals. Other graphs also show this ef-
fect.

Figure 4 shows the effect of different data per map by as-
signing a different number of map tasks. More map tasks
decrease the magnitude of any cost and benefits. E.g., if
compression has a benefit compared with no compression,
then the benefit remains, but becomes smaller when there
are more map tasks. Less data per map means compression
contributes less to the overall finishing time and hence en-
ergy compared to the overhead of launching many waves of
map tasks. When each map task deals with a trivial amount
of data, the overhead of task launches dominate, and com-
pression has negligible effect on the energy consumption.

5. DISCUSSION
Our results allow MapReduce users to identify the ap-

propriate compression settings for their jobs. We discuss
below initial ideas for a per-job compression decision algo-
rithm and the challenges of using this algorithm in multi-job
workloads.

5.1 Decision Algorithm for Compression
Our results in Figure 2 enable us to construct a per-job de-

cision algorithm that indicates whether the job should com-
press output and/or intermediate pairs. Note that Hadoop
cannot control compression at the input stage - it must reads
data as required by the job. Figures 3 and 4 indicate that
the decision algorithm remains fixed regardless of block sizes,
memory allocations, or the number of map and reduce tasks.

We propose the following algorithm:

1. Input

2.

3. No decision required.

4.

5. Output

6.

7. If compression ratio < 0.2, compress.

8. If compression ratio > 0.4, do not compress.

9. Else,

10. If data will be frequently read, compress.

11. Else, do not compress.

12.

13. Shuffle

14.

15. If compression ratio < 0.2, compress.

16. Else, do not compress.

The algorithm requires prior knowledge of output and in-
termediate data compressibility. Such knowledge is not al-
ways available. The intuition to assess compressibility is
that the more “ordered” the data is, the more compressible
the data would be, since less information is required to rep-
resent it. Compression codecs try to find the optimal rep-
resentation. In contrast, random data contains information

Figure 5: CDF of data sizes for 6 months of production

Hadoop jobs on one Facebook cluster.

in every bit, and the uncompressed representation is already
optimal.

Recall from our examples in Section 3.1 that structured
textual and numerical logs have compression ratios of 0.2
or less, natural language text and source code have com-
pression ratio around 0.4, and multimedia files have com-
pression ratio much greater than 0.4. Thus, our algorithm
would compress structural data, and not compress multime-
dia data. Natural language text and source code is near
the decision boundary. For systems mostly dealing with
this type of data, we recommend pin-pointing the decision
boundary with some sample jobs.

When the data represents an unknown format, we recom-
mend compressing at least once. This helps the algorithm
make future decisions for the same format.

5.2 Towards Workload Driven Evaluations
To use this decision algorithm in production, we must

consider multi-job workloads. As a result, we must address
several additional challenges. First, we need to identify a
representative workload. Through our RAD Lab industrial
partners, we know that different organizations have vastly
different workloads. Thus, workload driven evaluations are
likely to be case-by-case studies.

We are currently pursuing a thorough evaluation of a Face-
book production workload based on Hadoop log data. Fig-
ures 5 and 6 offer initial insights.

Figure 5 shows that most jobs have data sizes less than
1GB, while GB scale jobs represent a small albeit non-negligible
fraction. For jobs in the MB and KB data scale, Hadoop
overhead dominates the finishing time and energy consump-
tion. However, the GB scale jobs consume a large share of
compute resources, validating our focus on GB scale datasets.

Approximately 80% of the jobs have no shuffle data. Thus,
for this workload, output compression decisions outweight
shuffle compression decisions.

Figure 6 shows that few jobs have input-shuffle-output
data ratio that is 1-0-0, 0-1-0, 0-0-1, or 1-1-1. While our de-
cision algorithm accomodates any data ratios, we would not
have arrived at the prequisite insights without first study-
ing simplified data ratios. This validates our initial focus on
single, simplified jobs.

Combined, Figures 5 and 6 build a strong case for evalu-
ation using multi-job workloads.



Figure 1: Duration, energy, and power for HDFS write, HDFS read, shuffle, and sort. Data from randomshakespeare.

Figure 2: Effect of data with different compressibility. Showing energy only.

Figure 3: Effect of different block sizes and memory allocations. Showing energy only. Data from randomtextwriter.

Figure 4: Effect of different amount of data per map. Showing energy for shuffle only. Data from randomshakespeare.



Figure 6: CDF of data ratios for 6 months of production

Hadoop jobs on one Facebook cluster.

Many challenges remain. For example, reproducing data
compressibility would be difficult without access to produc-
tion input datasets. Reproducing the read and write pat-
terns of each data item would also be a challenge. Even if
we assume randomshakespeare format and reproducing only
the data size and data ratios, we still need a workload replay
mechanism. This mechanism would not be straightforward
since we cannot faithfully reproduce the same cluster scale
and configuration of Facebook’s production cluster.

We are working to overcome these challenges. We devel-
oped some initial thoughts regarding the workload replay
mechanism in [3].

6. CONCLUSION
We analyzed how compression can improve performance

and energy efficiency for MapReduce workloads. Our re-
sults show that compression provides 35-60% energy savings
for read heavy jobs as well as jobs with highly compress-
ible data. Based on our measurements, we construct an al-
gorithm that examines per-job data characteristics and IO
patterns, and decides when and where to use compression.

The compression decision algorithm would contribute to a
Hadoop workload manager that makes per-job optimizations
without user involvement. The workload manager can en-
compass many concerns other than compression. However,
evaluating such a workload manager requires knowledge of
workload characteristics, as well as a workload generation
or replay framework. This framework would also facilitate
detailed exploration of several compression factors not exam-
ined in this paper, such as a range of data compressibility,
different compression codecs, resource contention between
compression and the compute function of maps and reduces,
to name a few. Thus, we believe the workload evaluation
framework should be a primary focus of future work.
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